2 research outputs found
Cotton-Grass and Blueberry have Opposite Effect on Peat Characteristics and Nutrient Transformation in Peatland
Peatlands are large repositories of carbon (C). Sphagnum mosses play a key role in C sequestration, whereas the presence of vascular plants is generally thought to stimulate peat decomposition. Recent studies stress the importance of plant species for peat quality and soil microbial activity. Thus, learning about specific plant-microbe-soil relations and their potential feedbacks for C and nutrient cycling are important for a correct understanding of C sequestration in peatlands and its potential shift associated with vegetation change. We studied how the long-term presence of blueberry and cotton-grass, the main vascular dominants of spruce swamp forests, is reflected in the peat characteristics, soil microbial biomass and activities, and the possible implications of their spread for nutrient cycling and C storage in these systems. We showed that the potential effect of vascular plants on ecosystem functioning is species specific and need not necessarily result in increased organic matter decomposition. Although the presence of blueberry enhanced phosphorus availability, soil microbial biomass and the activities of C-acquiring enzymes, cotton-grass strongly depleted phosphorus and nitrogen from the peat. The harsh conditions and prevailing anoxia retarded the decomposition of cotton-grass litter and caused no significant enhancement in microbial biomass and exoenzymatic activity. Therefore, the spread of blueberry in peatlands may stimulate organic matter decomposition and negatively affect the C sequestration process, whereas the potential spread of cotton-grass would not likely change the functioning of peatlands as C sinks.Peer reviewe
Enhancing stormwater sediment settling at detention pond inlets by a bottom grid structure (BGS)
Stormwater sediments of various sizes and densities are recognised as one of the most important stormwater quality parameters that can be conventionally controlled by settling in detention ponds. The bottom grid structure (BGS) is an innovative concept proposed in this study to enhance removal of stormwater sediments entering ponds and reduce sediment resuspension. This concept was studied in a hydraulic scale model with the objective of elucidating the effects of the BGS geometry on stormwater sediment trapping. Towards this end, the BGS cell size and depth, and the cell cross-wall angle were varied for a range of flow rates, and the sediment trapping efficiency was measured in the model. The main value of the observed sediment trapping efficiencies, in the range from 13 to 55%, was a comparative assessment of various BGS designs. In general, larger cells (footprint 10 × 10 cm) were more effective than the smaller cells (5 × 5 cm), the cell depth exerted small influence on sediment trapping, and the cells with inclined cross-walls proved more effective in sediment trapping than the vertical cross-walls. However, the BGS with inclined cross-walls would be harder to maintain. Future studies should address an optimal cell design and testing in an actual stormwater pond.Validerad;2020;Nivå 2;2020-05-05 (alebob)</p