14 research outputs found
Hepatic oxidative stress in an animal model of sleep apnoea: effects of different duration of exposure
Background: Repeated apnoea events cause intermittent hypoxia (IH), which alters the function of various systems and produces free radicals and oxidative stress. Methods: We investigated hepatic oxidative stress in adult mice subjected to intermittent hypoxia, simulating sleep apnoea. Three groups were submitted to 21 days of IH (IH-21), 35 days of IH (IH-35), or 35 days of sham IH. We assessed the oxidative damage to lipids by TBARS and to DNA by comet assay; hepatic tissue inflammation was assessed in HE-stained slides. Antioxidants were gauged by catalase, superoxide dismutase, glutathione peroxidase activity and by total glutathione. Results: After IH-21, no significant change was observed in hepatic oxidative stress. After IH-35, significant oxidative stress, lipid peroxidation, DNA damage and reduction of endogenous antioxidants were detected. Conclusions: In an animal model of sleep apnoea, intermittent hypoxia causes liver damage due to oxidative stress after 35 days, but not after 21 days
Validação do método de graus-dia para estimar a data de diferenciação da panícula (DP) de cultivares de arroz irrigado no Rio Grande do Sul.
bitstream/item/115023/1/boletim197-web.pd
Pre-clinical evaluation of quinoxaline-derived chalcones in tuberculosis.
New effective compounds for tuberculosis treatment are needed. This study evaluated the effects of a series of quinoxaline-derived chalcones against laboratorial strains and clinical isolates of M. tuberculosis. Six molecules, namely N5, N9, N10, N15, N16, and N23 inhibited the growth of the M. tuberculosis H37Rv laboratorial strain. The three compounds (N9, N15 and N23) with the lowest MIC values were further tested against clinical isolates and laboratory strains with mutations in katG or inhA genes. From these data, N9 was selected as the lead compound for further investigation. Importantly, this chalcone displayed a synergistic effect when combined with moxifloxacin. Noteworthy, the anti-tubercular effects of N9 did not rely on inhibition of mycolic acids synthesis, circumventing important mechanisms of resistance. Interactions with cytochrome P450 isoforms and toxic effects were assessed in silico and in vitro. The chalcone N9 was not predicted to elicit any mutagenic, genotoxic, irritant, or reproductive effects, according to in silico analysis. Additionally, N9 did not cause mutagenicity or genotoxicity, as revealed by Salmonella/microsome and alkaline comet assays, respectively. Moreover, N9 did not inhibit the cytochrome P450 isoforms CYP3A4/5, CYP2C9, and CYP2C19. N9 can be considered a potential lead molecule for development of a new anti-tubercular therapeutic agent
Combinatory antibiotic therapy increases rate of bacterial kill but not final outcome in a novel mouse model of Staphylococcus aureus spinal implant infection
BACKGROUND:Management of spine implant infections (SII) are challenging. Explantation of infected spinal hardware can destabilize the spine, but retention can lead to cord compromise and biofilm formation, complicating management. While vancomycin monotherapy is commonly used, in vitro studies have shown reduced efficacy against biofilm compared to combination therapy with rifampin. Using an established in vivo mouse model of SII, we aim to evaluate whether combination therapy has increased efficacy compared to both vancomycin alone and infected controls. METHODS:An L-shaped, Kirschner-wire was transfixed into the L4 spinous process of 12-week-old C57BL/6 mice, and inoculated with bioluminescent Staphylococcus aureus. Mice were randomized into a vancomycin group, a combination group with vancomycin plus rifampin, or a control group receiving saline. Treatment began on post-operative day (POD) 7 and continued through POD 14. In vivo imaging was performed to monitor bioluminescence for 35 days. Colony-forming units (CFUs) were cultured on POD 35. RESULTS:Bioluminescence peaked around POD 7 for all groups. The combination group had a 10-fold decrease in signal by POD 10. The vancomycin and control groups reached similar levels on POD 17 and 21, respectively. On POD 25 the combination group dropped below baseline, but rebounded to the same level as the other groups, demonstrating a biofilm-associated infection by POD 35. Quantification of CFUs on POD 35 confirmed an ongoing infection in all three groups. CONCLUSIONS:Although both therapies were initially effective, they were not able to eliminate implant biofilm bacteria, resulting in a rebound infection after antibiotic cessation. This model shows, for the first time, why histologic-based, static assessments of antimicrobials can be misleading, and the importance of longitudinal tracking of infection. Future studies can use this model to test combinations of antibiotic therapies to see if they are more effective in eliminating biofilm prior to human trials