4 research outputs found
Identification and characterisation of mitogen activated protein kinases in leaf tissue of Nicotiana tabacum in response to elicitation by Lipopolysaccharides.
Lipopolysaccharides from Gram-negative bacteria are amphipathic, tripartite molecules consisting of a hydrophobic lipid A portion, a core hetero-oligosaccharide and a repetitive hydrophilic O-antigen polysaccharide region. Through cell : cell interactions, plants can come into contact with LPS originating from root-associated rhizobacteria, bacterial endophytes as well as bacterial pathogens. Biologically active LPS molecules have been shown to act as determinants of bacterial virulence but also as determinants of induced systemic resistance (ISR) and activators of the phenotypically related systemic acquired resistance (SAR), characterised by accelerated and enhanced defence responses. LPS as a ¡¥pathogen associated molecular pattern, PAMP¡¦ molecule, has the ability to activate the innate mammalian immunity system and to act as an immunomodulator of immune ¡V and inflammatory systems via the conserved lipid A region. It is thus believed that LPS is able to promote plant disease resistance through activation of ISR and/or SAR; however here, the O-antigen region is also implicated to play a pivotal role in the signal perception and transduction in response to elicitation by this bio-active lipoglycan. LPS was isolated from the cell walls of the endophyte, Burkholderia cepacia, characterised by denaturing electrophoresis and compared to the equivalent from the pathogen Ralstonia solanacearum. When dissolved in the presence of Ca2+ and Mg2+, the LPS attained its biologically active micellar state through complex formation. The former LPS strongly induced the activation of two MAPKs following treatment of Nicotiana tabacum cv Samsun leaves, while comparative inductions with the R. solanacearum counterpart were extremely weak and might be ascribed to it lacking an extensive O-antigen region. No previous reports on LPS-responsive MAP kinases in plant tissues exist in the literature. The time- and dose dependent activation of the two kinases were therefore investigated and their physico-chemical properties compared. A novel 32 kDa MAP kinase was transiently activated in response to exposure to LPS with optimal activation at 7 min post-elicitation with 100 ƒÝg.ml-1 LPS. Its identity as an ERK (extracellular signal-related) MAPK was confirmed by immunodetection with a pTEpY-specific (anti-active) MAPK antibody, tyrosine-phosphorylated association of activation and inhibition of activation by U0126, an inhibitor of upstream MAPKKs. The kinase did not utilise casein, histone or myelin basic protein as substrates and no endogenous substrate could be identified. The activated MAP kinase exhibited a pI of 6.3, but two charge isomers of 32 kDa respectively were found upon two-dimensional electrophoresis. Although loss of the dual-phosphorylated epitope during purification attempts prevented extensive purification, 30% ammonium sulphate fractionation significantly (33 fold) enriched the MAPK. A second, distinct, 30 kDa MAP kinase was transiently activated in response to 125 ƒÝg.ml-1 LPS at 40 min post-elicitation, and its identity as a p38 MAPK, to date not yet found in plants, was confirmed by immunodetection with a pTGpY-specific (anti-active) MAPK antibody, tyrosine-phosphorylation associated with activation and inhibition of activation by SB203580, a direct inhibitor of p38 MAPKs. The kinase did not utilise casein, histone or MBP as substrates and no endogenous substrate could be identified. The kinase displayed a pI of 6.0, but two charge isomers of 30 kDa respectively were found following two-dimensional electrophoresis. Loss of the dual-phosphorylated epitope again prevented significant purification, but the protein was found to be significantly (83 fold) enriched by 30% ammonium sulphate fractionation. Although LPS has been reported to be capable of altering Ca2+ permeability and perturbation of Ca2+ homeostasis across plasma membranes, Ca2+ did not appear to potentiate or reduce the activation of either the 30 or the 32 kDa kinases. To date other MAP kinases have been shown to act either independently or upstream from reactive oxygen intermediates (ROI) produced during the oxidative burst. It was found that peroxide and concomitant ROI is either not generated in leaf tissue in response to LPS elicitation, or if generated, do not trigger the activation of the two kinases. The identification and partial characterisation of these two novel tobacco MAPKs in the signal perception and transduction response to LPS, significantly contributes to understanding the biochemical basis of the mechanism of action of LPS as a ¡¥resistance elicitor¡¦ involved in the triggering of effective plant defence responses and contributes towards relating the activation of mammalian innate immunity to similar responses in plants.Prof. I.A. Duber
Comparative conventional- and quantum dot-labelling strategies for LPS binding site detection in Arabidopsis thaliana mesophyll protoplasts
Lipopolysaccharide (LPS) from Gram-negative bacteria is recognized as a microbe-associated molecular pattern (MAMP) and not only induces an innate immune response in plants, but also stimulates the development of characteristic defense responses. However, identification and characterization of a cell surface LPS-receptor/binding site, as described in mammals, remains elusive in plants. As an amphiphilic, macromolecular lipoglycan, intact LPS potentially contains three MAMP-active regions, represented by the O-polysaccharide chain, the core and the lipid A. Binding site studies with intact labelled LPS were conducted in Arabidopsis thaliana protoplasts and quantified using flow cytometry fluorescence changes. Qdots, which allow non-covalent, hydrophobic labelling were used as a novel strategy in this study and compared to covalent, hydrophilic labelling with Alexa 488. Affinity for LPS-binding sites was clearly demonstrated by concentration-, temperature- and time-dependent increases in protoplast fluorescence following treatment with the labelled LPS. Moreover, this induced fluorescence increase was convincingly reduced following pre-treatment with excess unlabeled LPS, thereby indicating reversibility of LPS binding. Inhibition of the binding process is also reported using endo- and exocytosis inhibitors. Here, we present evidence for the anticipated presence of LPS-specific binding sites in Arabidopsis protoplasts, and furthermore propose Qdots as a more sensitive LPS-labelling strategy in comparison to the conventional Alexa 488 hydrazide label for binding studies
A Novel Chromate Reductase from Thermus scotoductus SA-01 Related to Old Yellow Enzyme▿
Bacteria can reduce toxic and carcinogenic Cr(VI) to insoluble and less toxic Cr(III). Thermus scotoductus SA-01, a South African gold mine isolate, has been shown to be able to reduce a variety of metals, including Cr(VI). Here we report the purification to homogeneity and characterization of a novel chromate reductase. The oxidoreductase is a homodimeric protein, with a monomer molecular mass of approximately 36 kDa, containing a noncovalently bound flavin mononucleotide cofactor. The chromate reductase is optimally active at a pH of 6.3 and at 65°C and requires Ca2+ or Mg2+ for activity. Enzyme activity was also dependent on NADH or NADPH, with a preference for NADPH, coupling the oxidation of approximately 2 and 1.5 mol NAD(P)H to the reduction of 1 mol Cr(VI) under aerobic and anaerobic conditions, respectively. The Km values for Cr(VI) reduction were 3.5 and 8.4 μM for utilizing NADH and NADPH as electron donors, respectively, with corresponding Vmax values of 6.2 and 16.0 μmol min−1 mg−1. The catalytic efficiency (kcat/Km) of chromate reduction was 1.14 × 106 M−1 s−1, which was >50-fold more efficient than that of the quinone reductases and >180-fold more efficient than that of the nitroreductases able to reduce Cr(VI). The chromate reductase was identified to be encoded by an open reading frame of 1,050 bp, encoding a single protein of 38 kDa under the regulation of an Escherichia coli σ70-like promoter. Sequence analysis shows the chromate reductase to be related to the old yellow enzyme family, in particular the xenobiotic reductases involved in the oxidative stress response
Profiling of altered metabolomic states in Nicotiana tabacum cells induced by priming agents.
Metabolomics has developed into a valuable tool for advancing our understanding of plant metabolism. Plant innate immune defenses can be activated and enhanced so that, subsequent to being pre-sensitized, plants are able to launch a stronger and faster defense response upon exposure to pathogenic microorganisms, a phenomenon known as priming. Here, three contrasting chemical activators, namely acibenzolar-S-methyl, azelaic acid and riboflavin, were used to induce a primed state in Nicotiana tabacum cells. Identified biomarkers were then compared to responses induced by three phytohormones - abscisic acid, methyljasmonate and salicylic acid. Altered metabolomes were studied using a metabolite fingerprinting approach based on liquid chromatography and mass spectrometry. Multivariate data models indicated that these inducers cause time-dependent metabolic perturbations in the cultured cells and revealed biomarkers of which the levels are affected by these agents. A total of 34 metabolites were annotated from the mass spectral data and online databases. Venn diagrams were used to identify common biomarkers as well as those unique to a specific agent. Results implicate 20 cinnamic acid derivatives conjugated to (i) quinic acid (chlorogenic acids), (ii) tyramine, (iii) polyamines or (iv) glucose as discriminatory biomarkers of priming in tobacco cells. Functional roles for most of these metabolites in plant defense responses could thus be proposed. Metabolites induced by the activators belong to the early phenylpropanoid pathway, which indicates that different stimuli can activate similar pathways but with different metabolite fingerprints. Possible linkages to phytohormone-dependent pathways at a metabolomic level were indicated in the case of cells treated with salicylic acid and methyljasmonate. The results contribute to a better understanding of the priming phenomenon and advance our knowledge of cinnamic acid derivatives as versatile defense metabolites