84 research outputs found

    A deep gold mine metagenome as a source of novel esterases.

    Get PDF
    New sources of enzymes for biotechnological applications are continually being sought for. While diverse microbial ecosysyems have been demonstrated in the deep subsurfaces, deep mines provide easy access to these specialist communities. Therefore, the aim of this study was to assess a deep mine biofilm as a source of novel esterase enzymes. Biofilm was collected from the Beatrix Mine in South Africa, at a depth of 808 m. Assessment of the diversity revealed a group of previously uncultured bacteria and archaea. A metagenome library was screened for esterolytic activity, producing two esterolytic clones: a phospholipase patatin protein and an isochorismatase family protein. The isochorismatase family protein contained the catalytic Asp and Cys but not the Arg, which is considered as important for catalysis. The patatin showed 55% similarity to its closest relative; the patatin family protein from Plesiocystis pacifica. The expressed patatin displayed a preference for the C6 ester and was maximally active at pH 8 and 30°C. This study reported that screening of a relatively small metagenome library from the deep mine biofilm provided two esterolytic clones, which differed from their known counterparts. This indicates that the deep mine ecosystems contain an untapped resource of novel and potentially useful enzymes which may have applications in chemical syntheses

    Subcritical Water Extraction and Its Prospects for Aflatoxins Extraction in Biological Materials

    Get PDF
    Aflatoxins (AFs) are well-known mycotoxins and contaminants of various agricultural commodities globally that are linked to a wide range of adverse health and economic complications. Because of their incessant proliferation and deleterious consequences, it has become mandatory to routinely monitor the levels of these toxins in agricultural products before they go into the market. Essentially, effective analysis is an important component of AFs control, and extraction is a necessary step for their analysis, irrespective of the protocol adopted. Conventional methods for AF extraction are expensive, the processes involved are tedious and utilize large quantities of organic solvents that are environmentally unfriendly. This has necessitated the quest for alternatives that are ‘green’, cost-effective and easy to perform. In this regard, subcritical water extraction (SWE) is a viable alternative that has proven to be effective in the extraction of other bioactive compounds. This chapter presents a critical appraisal of the principles and dynamics of SWE, and its current applications as a viable tool in the extraction of AFs from various biological matrices. Although further research needs to be performed to enhance its applicability, the adoption of SWE in the extraction of AFs seems very promising and needs to be properly exploited

    A metabolomic landscape of maize plants treated with a microbial biostimulant under well-watered and drought conditions

    Get PDF
    Microbial plant biostimulants have been successfully applied to improve plant growth, stress resilience and productivity. However, the mechanisms of action of biostimulants are still enigmatic, which is the main bottleneck for the fully realization and implementation of biostimulants into the agricultural industry. Here, we report the elucidation of a global metabolic landscape of maize (Zea mays L) leaves in response to a microbial biostimulant, under well-watered and drought conditions. The study reveals that the increased pool of tricarboxylic acid (TCA) intermediates, alterations in amino acid levels and differential changes in phenolics and lipids are key metabolic signatures induced by the application of the microbial-based biostimulant. These reconfigurations of metabolism gravitate toward growth-promotion and defense preconditioning of the plant. Furthermore, the application of microbial biostimulant conferred enhanced drought resilience to maize plants via altering key metabolic pathways involved in drought resistance mechanisms such as the redox homeostasis, strengthening of the plant cell wall, osmoregulation, energy production and membrane remodeling. For the first time, we show key molecular events, metabolic reprogramming, activated by a microbial biostimulant for plant growth promotion and defense priming. Thus, these elucidated metabolomic insights contribute to ongoing efforts in decoding modes of action of biostimulants and generating fundamental scientific knowledgebase that is necessary for the development of the plant biostimulants industry, for sustainable food security

    Unravelling the metabolic reconfiguration of the post-challenge primed state in Sorghum bicolor responding to Colletotrichum sublineolum infection

    Get PDF
    Priming is a natural phenomenon that pre-conditions plants for enhanced defence against a wide range of pathogens. It represents a complementary strategy, or sustainable alternative that can provide protection against disease. However, a comprehensive functional and mechanistic understanding of the various layers of priming events is still limited. A non-targeted metabolomics approach was used to investigate metabolic changes in plant growth-promoting rhizobacteria (PGPR)-primed Sorghum bicolor seedlings infected with the anthracnose-causing fungal pathogen, Colletotrichum sublineolum, with a focus on the post-challenge primed state phase. At the 4-leaf growth stage, the plants were treated with a strain of Paenibacillus alvei at 108 cfu mL1. Following a 24 h PGPR application, the plants were inoculated with a C. sublineolum spore suspension (106 spores mL1), and the infection monitored over time: 1, 3, 5, 7 and 9 days post-inoculation. Non-infected plants served as negative controls. Intracellular metabolites from both inoculated and non-inoculated plants were extracted with 80% methanol-water. The extracts were chromatographically and spectrometrically analysed on an ultra-high performance liquid chromatography (UHPLC) system coupled to high-definition mass spectrometry. The acquired multidimensional data were processed to create data matrices for chemometric modelling. The computed models indicated time-related metabolic perturbations that reflect primed responses to the fungal infection. Evaluation of orthogonal projection to latent structure-discriminant analysis (OPLS-DA) loading shared and unique structures (SUS)-plots uncovered the di erential stronger defence responses against the fungal infection observed in primed plants. These involved enhanced levels of amino acids (tyrosine, tryptophan), phytohormones (jasmonic acid and salicylic acid conjugates, and zeatin), and defence-related components of the lipidome. Furthermore, other defence responses in both naïve and primed plants were characterised by a complex mobilisation of phenolic compounds and de novo biosynthesis of the flavones, apigenin and luteolin and the 3-deoxyanthocyanidin phytoalexins, apigeninidin and luteolinidin, as well as some related conjugates.Supplementary Material: Figure S1: Evaluation of disease symptoms in Colletotrichum sublineolum infected sorghum plants; Figure S2: Representative BPI MS chromatograms of ESI(+) data (3 d.p.i.); Figure S3: Unsupervised chemometric modelling of ESI(-) data; Figure S4: OPLS-DA modelling and variable/feature selection. Table S1: Annotated (MSI-level 2) metabolites reported in Table 1, with fragmentation information.The South African National Research Foundation (NRF)http://www.mdpi.com/journal/metabolitesam2020Plant Production and Soil Scienc

    Metabolomic Analysis of Defense-Related Reprogramming in Sorghum bicolor in Response to Colletotrichum sublineolum Infection Reveals a Functional Metabolic Web of Phenylpropanoid and Flavonoid Pathways

    Get PDF
    The metabolome of a biological system provides a functional readout of the cellular state, thus serving as direct signatures of biochemical events that define the dynamic equilibrium of metabolism and the correlated phenotype. Hence, to elucidate biochemical processes involved in sorghum responses to fungal infection, a liquid chromatography-mass spectrometry-based untargeted metabolomic study was designed. Metabolic alterations of three sorghum cultivars responding to Colletotrichum sublineolum, were investigated. At the 4-leaf growth stage, the plants were inoculated with fungal spore suspensions and the infection monitored over time: 0, 3, 5, 7, and 9 days post inoculation. Non-infected plants were used as negative controls. The metabolite composition of aqueous-methanol extracts were analyzed on an ultra-high performance liquid chromatography system coupled to high-definition mass spectrometry. The acquired multidimensional data were processed to create data matrices for multivariate statistical analysis and chemometric modeling. The computed chemometric models indicated time- and cultivar-related metabolic changes that reflect sorghum responses to the fungal infection. Metabolic pathway and correlation-based network analyses revealed that this multi-component defense response is characterized by a functional metabolic web, containing defense-related molecular cues to counterattack the pathogen invasion. Components of this network are metabolites from a range of interconnected metabolic pathways with the phenylpropanoid and flavonoid pathways being the central hub of the web. One of the key features of this altered metabolism was the accumulation of an array of phenolic compounds, particularly de novo biosynthesis of the antifungal 3-deoxyanthocynidin phytoalexins, apigeninidin, luteolinidin, and related conjugates. The metabolic results were complemented by qRT-PCR gene expression analyses that showed upregulation of defense-related marker genes. Unraveling key characteristics of the biochemical mechanism underlying sorghum—C. sublineolum interactions, provided valuable insights with potential applications in breeding crop plants with enhanced disease resistance. Furthermore, the study contributes to ongoing efforts toward a comprehensive understanding of the regulation and reprogramming of plant metabolism under biotic stress

    Metabolomic evaluation of PGPR defence priming in wheat (Triticum aestivum L.) cultivars infected with Puccinia striiformis f. sp. tritici (stripe rust)

    Get PDF
    Plant-microbe interactions are a phenomenal display of symbiotic/parasitic relationships between living organisms. Plant growth-promoting rhizobacteria (PGPR) are some of the most widely investigated plant-beneficial microbes due to their capabilities in stimulating plant growth and development and conferring protection to plants against biotic and abiotic stresses. As such, PGPR-mediated plant priming/induced systemic resistance (ISR) has become a hot topic among researchers, particularly with prospects of applications in sustainable agriculture. The current study applies untargeted ultra-high performance liquid chromatography-high-definition mass spectrometry (UHPLC-HDMS) to investigate PGPR-based metabolic reconfigurations in the metabolome of primed wheat plants against Puccinia striiformis f. sp. tricti (Pst). A seed bio-priming approach was adopted, where seeds were coated with two PGPR strains namely Bacillus subtilis and Paenibacillus alvei (T22) and grown under controlled conditions in a glasshouse. The plants were infected with Pst one-week post-germination, followed by weekly harvesting of leaf material. Subsequent metabolite extraction was carried out for analysis on a UHPLC-HDMS system for data acquisition. The data was chemometrically processed to reveal the underlying trends and data structures as well as potential signatory biomarkers for priming against Pst. Results showed notable metabolic reprogramming in primary and secondary metabolism, where the amino acid and organic acid content of primed-control, primed-challenged and non-primed-challenged plants were differentially reprogrammed. Similar trends were observed from the secondary metabolism, in which primed plants (particularly primed-challenged) showed an up-regulation of phenolic compounds (flavonoids, hydroxycinnamic acids-HCAs- and HCA amides) compared to the non-primed plants. The metabolomics-based semi-quantitative and qualitative assessment of the plant metabolomes revealed a time-dependent metabolic reprogramming in primed-challenged and primed-unchallenged plants, indicating the metabolic adaptations of the plants to stripe rust infection over time

    Identification and characterisation of mitogen activated protein kinases in leaf tissue of Nicotiana tabacum in response to elicitation by Lipopolysaccharides.

    Get PDF
    Lipopolysaccharides from Gram-negative bacteria are amphipathic, tripartite molecules consisting of a hydrophobic lipid A portion, a core hetero-oligosaccharide and a repetitive hydrophilic O-antigen polysaccharide region. Through cell : cell interactions, plants can come into contact with LPS originating from root-associated rhizobacteria, bacterial endophytes as well as bacterial pathogens. Biologically active LPS molecules have been shown to act as determinants of bacterial virulence but also as determinants of induced systemic resistance (ISR) and activators of the phenotypically related systemic acquired resistance (SAR), characterised by accelerated and enhanced defence responses. LPS as a ¡¥pathogen associated molecular pattern, PAMP¡¦ molecule, has the ability to activate the innate mammalian immunity system and to act as an immunomodulator of immune ¡V and inflammatory systems via the conserved lipid A region. It is thus believed that LPS is able to promote plant disease resistance through activation of ISR and/or SAR; however here, the O-antigen region is also implicated to play a pivotal role in the signal perception and transduction in response to elicitation by this bio-active lipoglycan. LPS was isolated from the cell walls of the endophyte, Burkholderia cepacia, characterised by denaturing electrophoresis and compared to the equivalent from the pathogen Ralstonia solanacearum. When dissolved in the presence of Ca2+ and Mg2+, the LPS attained its biologically active micellar state through complex formation. The former LPS strongly induced the activation of two MAPKs following treatment of Nicotiana tabacum cv Samsun leaves, while comparative inductions with the R. solanacearum counterpart were extremely weak and might be ascribed to it lacking an extensive O-antigen region. No previous reports on LPS-responsive MAP kinases in plant tissues exist in the literature. The time- and dose dependent activation of the two kinases were therefore investigated and their physico-chemical properties compared. A novel 32 kDa MAP kinase was transiently activated in response to exposure to LPS with optimal activation at 7 min post-elicitation with 100 ƒÝg.ml-1 LPS. Its identity as an ERK (extracellular signal-related) MAPK was confirmed by immunodetection with a pTEpY-specific (anti-active) MAPK antibody, tyrosine-phosphorylated association of activation and inhibition of activation by U0126, an inhibitor of upstream MAPKKs. The kinase did not utilise casein, histone or myelin basic protein as substrates and no endogenous substrate could be identified. The activated MAP kinase exhibited a pI of 6.3, but two charge isomers of 32 kDa respectively were found upon two-dimensional electrophoresis. Although loss of the dual-phosphorylated epitope during purification attempts prevented extensive purification, 30% ammonium sulphate fractionation significantly (33 fold) enriched the MAPK. A second, distinct, 30 kDa MAP kinase was transiently activated in response to 125 ƒÝg.ml-1 LPS at 40 min post-elicitation, and its identity as a p38 MAPK, to date not yet found in plants, was confirmed by immunodetection with a pTGpY-specific (anti-active) MAPK antibody, tyrosine-phosphorylation associated with activation and inhibition of activation by SB203580, a direct inhibitor of p38 MAPKs. The kinase did not utilise casein, histone or MBP as substrates and no endogenous substrate could be identified. The kinase displayed a pI of 6.0, but two charge isomers of 30 kDa respectively were found following two-dimensional electrophoresis. Loss of the dual-phosphorylated epitope again prevented significant purification, but the protein was found to be significantly (83 fold) enriched by 30% ammonium sulphate fractionation. Although LPS has been reported to be capable of altering Ca2+ permeability and perturbation of Ca2+ homeostasis across plasma membranes, Ca2+ did not appear to potentiate or reduce the activation of either the 30 or the 32 kDa kinases. To date other MAP kinases have been shown to act either independently or upstream from reactive oxygen intermediates (ROI) produced during the oxidative burst. It was found that peroxide and concomitant ROI is either not generated in leaf tissue in response to LPS elicitation, or if generated, do not trigger the activation of the two kinases. The identification and partial characterisation of these two novel tobacco MAPKs in the signal perception and transduction response to LPS, significantly contributes to understanding the biochemical basis of the mechanism of action of LPS as a ¡¥resistance elicitor¡¦ involved in the triggering of effective plant defence responses and contributes towards relating the activation of mammalian innate immunity to similar responses in plants.Prof. I.A. Duber

    Plant metabolomics: A new frontier in phytochemical analysis

    No full text
    The primary and secondary metabolites found in plant cells are the final recipients of biological information flow. In turn, their levels can influence gene expression and protein stability. Qualitative and quantitative measurements of these metabolites reflect the cellular state under defined conditions, and yield critical insights into the cellular processes that control the biochemical phenotype of the cell, tissue or whole organism. Metabolomics differs from traditional targeted phytochemical analysis in various fundamental aspects; for example, it is a data-driven approach with predictive power that aims to assess all measurable metabolites without any pre-conception or pre-selection. As such, metabolomics is providing new dimensions in the study of systems biology, enabling the in-depth understanding of the intra- and extracellular interactions of plant cells. Metabolomics is also developing into a valuable tool that can be used to monitor and assess gene function, and to characterise post-genomic processes from a broad perspective. Here, we give an overview of the fundamental analytical technologies and subsequent multivariate data analyses involved in plant metabolomics as a research tool to study various aspects of plant biology
    corecore