8 research outputs found

    Synthesis of Selected Mixed Oxide Materials with Tailored Photocatalytic Activity in the Degradation of Tetracycline

    No full text
    The elimination of antibiotics occurring in the natural environment has become a great challenge in recent years. Among other techniques, the photocatalytic degradation of this type of pollutant seems to be a promising approach. Thus, the search for new photoactive materials is currently of great importance. The present study concerns the sol–gel synthesis of mono, binary and ternary TiO2-based materials, which are used as active photocatalysts. The main goal was to evaluate how the addition of selected components—zirconium dioxide (ZrO2) and/or zinc oxide (ZnO)—during the synthesis of TiO2-based materials and the temperature of thermal treatment affect the materials’ physicochemical and photocatalytic properties. The fabricated mixed oxide materials underwent detailed physicochemical analysis, utilizing scanning-electron microscopy (SEM), X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), energy-dispersive X-ray spectroscopy (EDS), low-temperature N2 sorption (BET model), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The synthesized mixed oxide materials were used as photocatalysts in the heterogeneous photodegradation of tetracycline (TC). The physicochemical properties of the fabricated photocatalysts, including morphology, crystalline and textural structure, as well as the pH of the reaction system in the photocatalytic tests, were taken into account in determining their photo-oxidation activity. LC–MS/MS analysis was used to identify the possible degradation products of the selected antibiotic

    Analysis of fibrosis in control or pressure overloaded rat hearts after mechanical unloading by heterotopic heart transplantation

    No full text
    Mechanical unloading (MU) by implantation of left ventricular assist devices (LVAD) has become clinical routine. This procedure has been shown to reverse cardiac pathological remodeling, with the underlying molecular mechanisms incompletely understood. Most studies thus far were performed in non-standardized human specimens or MU of healthy animal hearts. Our study investigates cardiac remodeling processes in sham-operated healthy rat hearts and in hearts subjected to standardized pathological pressure overload by transverse aortic constriction (TAC) prior to MU by heterotopic heart transplantation (hHTx/MU). Rats underwent sham or TAC surgery. Disease progression was monitored by echocardiography prior to MU by hHTx/MU. Hearts after TAC or TAC combined with hHTx/MU were removed and analyzed by histology, western immunoblot and gene expression analysis. TAC surgery resulted in cardiac hypertrophy and impaired cardiac function. TAC hearts revealed significantly increased cardiac myocyte diameter and mild fibrosis. Expression of hypertrophy associated genes after TAC was higher compared to hearts after hHTx/MU. While cardiac myocyte cell diameter regressed to the level of sham-operated controls in all hearts subjected to hHTx/MU, fibrotic remodeling was significantly exacerbated. Transcription of pro-fibrotic and apoptosis-related genes was markedly augmented in all hearts after hHTx/MU. Sarcomeric proteins involved in excitation-contraction coupling displayed significantly lower phosphorylation levels after TAC and significantly reduced total protein levels after hHTx/MU. Development of myocardial fibrosis, cardiac myocyte atrophy and loss of sarcomeric proteins was observed in all hearts that underwent hHTX/MU regardless of the disease state. These results may help to explain the clinical experience with low rates of LVAD removal due to lack of myocardial recovery

    Receptor-independent modulation of cAMP-dependent protein kinase and protein phosphatase signaling in cardiac myocytes by oxidizing agents

    No full text
    The contraction and relaxation of the heart is controlled by stimulation of the beta 1-adrenoreceptor (AR) signaling cascade, which leads to activation of cAMP-dependent protein kinase (PKA) and subsequent cardiac protein phosphorylation. Phosphorylation is counteracted by the main cardiac protein phosphatases, PP2A and PP1. Both kinase and phosphatases are sensitive to intramolecular disulfide formation in their catalytic subunits that inhibits their activity. Additionally, intermolecular disulfide formation between PKA type I regulatory subunits (PKA-RI) has been described to enhance PKA's affinity for protein kinase A anchoring proteins, which alters its subcellular distribution. Nitroxyl donors have been shown to affect contractility and relaxation, but the mechanistic basis for this effect is unclear. The present study investigates the impact of several nitroxyl donors and the thiol-oxidizing agent diamide on cardiac myocyte protein phosphorylation and oxidation. Although all tested compounds equally induced intermolecular disulfide formation in PKA-RI, only 1-nitrosocyclohexalycetate (NCA) and diamide induced reproducible protein phosphorylation. Phosphorylation occurred independently of beta(1)-AR activation, but was abolished after pharmacological PKA inhibition and thus potentially attributable to increased PKA activity. NCA treatment of cardiac myocytes induced translocation of PKA and phosphatases to the myofilament compartment as shown by fractionation, immunofluorescence, and proximity ligation assays. Assessment of kinase and phosphatase activity within the myofilament fraction of cardiac myocytes after exposure to NCA revealed activation of PKA and inhibition of phosphatase activity thus explaining the increase in phosphorylation. The data suggest that the NCA-mediated effect on cardiac myocyte protein phosphorylation orchestrates alterations in the kinase/phosphatase balance

    CMYA5 is a novel interaction partner of FHL2 in cardiac myocytes

    Get PDF
    Four-and-a-half LIM domains protein 2 (FHL2) is an anti-hypertrophic adaptor protein that regulates cardiac myocyte signalling and function. Herein, we identified cardiomyopathy-associated 5 (CMYA5) as a novel FHL2 interaction partner in cardiac myocytes. In vitro pull-down assays demonstrated interaction between FHL2 and the N- and C-terminal regions of CMYA5. The interaction was verified in adult cardiac myocytes by proximity ligation assays. Immunofluorescence and confocal microscopy demonstrated co-localisation in the same subcellular compartment. The binding interface between FHL2 and CMYA5 was mapped by peptide arrays. Exposure of neonatal rat ventricular myocytes to a CMYA5 peptide covering one of the FHL2 interaction sites led to an increase in cell area at baseline, but a blunted response to chronic phenylephrine treatment. In contrast to wild-type hearts, loss or reduced FHL2 expression in Fhl2-targeted knockout mouse hearts or in a humanised mouse model of hypertrophic cardiomyopathy led to redistribution of CMYA5 into the perinuclear and intercalated disc region. Taken together, our results indicate a direct interaction of the two adaptor proteins FHL2 and CMYA5 in cardiac myocytes, which might impact subcellular compartmentation of CMYA5

    PITX2 deficiency leads to atrial mitochondrial dysfunction

    No full text
    Background. Reduced left atrial PITX2 is associated with atrial cardiomyopathy and atrial fibrillation. PITX2 is restricted to left atrial cardiomyocytes in the adult heart. The links between PITX2 deficiency, atrial cardiomyopathy and atrial fibrillation are not fully understood. Methods. To identify mechanisms linking PITX2 deficiency to atrial fibrillation, we generated and characterized PITX2-deficient human atrial cardiomyocytes derived from human induced pluripotent stem cells (hiPSC) and their controls. Results. PITX2-deficient hiPSC-derived atrial cardiomyocytes showed shorter and disorganised sarcomeres and increased mononucleation. Electron microscopy found an increased number of smaller mitochondria compared to the control. Mitochondrial protein expression was altered in PITX2-deficient hiPSC-derived atrial cardiomyocytes. Single-nuclear RNA-sequencing found differences in cellular respiration pathways and differentially expressed mitochondrial and ion channel genes in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2 repression in hiPSC-derived atrial cardiomyocytes replicated dysregulation of cellular respiration. Mitochondrial respiration was shifted to increased glycolysis in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2-deficient human hiPSC-derived atrial cardiomyocytes showed higher spontaneous beating rates. Action potential duration was more variable with an overall prolongation of early repolarization, consistent with metabolic defects. Gene expression analyses confirmed changes in mitochondrial genes in left atria from 42 patients with atrial fibrillation compared to 43 patients in sinus rhythm. Dysregulation of left atrial mitochondrial (COX7C) and metabolic (FOXO1) genes was associated with PITX2 expression in human left atria. Conclusions. In summary, PITX2 deficiency causes mitochondrial dysfunction and a metabolic shift to glycolysis in human atrial cardiomyocytes. PITX2-dependent metabolic changes can contribute to the structural and functional defects found in PITX2-deficient atria.<br/

    PITX2 deficiency leads to atrial mitochondrial dysfunction

    No full text
    Background. Reduced left atrial PITX2 is associated with atrial cardiomyopathy and atrial fibrillation. PITX2 is restricted to left atrial cardiomyocytes in the adult heart. The links between PITX2 deficiency, atrial cardiomyopathy and atrial fibrillation are not fully understood. Methods. To identify mechanisms linking PITX2 deficiency to atrial fibrillation, we generated and characterized PITX2-deficient human atrial cardiomyocytes derived from human induced pluripotent stem cells (hiPSC) and their controls. Results. PITX2-deficient hiPSC-derived atrial cardiomyocytes showed shorter and disorganised sarcomeres and increased mononucleation. Electron microscopy found an increased number of smaller mitochondria compared to the control. Mitochondrial protein expression was altered in PITX2-deficient hiPSC-derived atrial cardiomyocytes. Single-nuclear RNA-sequencing found differences in cellular respiration pathways and differentially expressed mitochondrial and ion channel genes in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2 repression in hiPSC-derived atrial cardiomyocytes replicated dysregulation of cellular respiration. Mitochondrial respiration was shifted to increased glycolysis in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2-deficient human hiPSC-derived atrial cardiomyocytes showed higher spontaneous beating rates. Action potential duration was more variable with an overall prolongation of early repolarization, consistent with metabolic defects. Gene expression analyses confirmed changes in mitochondrial genes in left atria from 42 patients with atrial fibrillation compared to 43 patients in sinus rhythm. Dysregulation of left atrial mitochondrial (COX7C) and metabolic (FOXO1) genes was associated with PITX2 expression in human left atria. Conclusions. In summary, PITX2 deficiency causes mitochondrial dysfunction and a metabolic shift to glycolysis in human atrial cardiomyocytes. PITX2-dependent metabolic changes can contribute to the structural and functional defects found in PITX2-deficient atria.<br/
    corecore