24 research outputs found

    Tumor-resident dendritic cells and macrophages modulate the accumulation of TCR-engineered T cells in melanoma

    Get PDF
    Ongoing clinical trials explore T cell receptor (TCR) gene therapy as a treatment option for cancer, but responses in solid tumors are hampered by the immunosuppressive microenvironment. The production of TCR gene-engineered T cells requires full T cell activation in vitro, and it is currently unknown whether in vivo interactions with conventional dendritic cells (cDCs) regulate the accumulation and function of engineered T cells in tumors. Using the B16 melanoma model and the inducible depletion of CD11c+ cells in CD11c.diphtheria toxin receptor (DTR) mice, we analyzed the interaction between tumor-resident cDCs and engineered T cells expressing the melanoma-specific TRP-2 TCR. We found that depletion of CD11c+ cells triggered the recruitment of cross-presenting cDC1 into the tumor and enhanced the accumulation of TCR-engineered T cells. We show that the recruited tumor cDCs present melanoma tumor antigen, leading to enhanced activation of TCR-engineered T cells. In addition, detailed analysis of the tumor myeloid compartment revealed that the depletion of a population of DT-sensitive macrophages can contribute to the accumulation of tumor-infiltrating T cells. Together, these data suggest that the relative frequency of tumor-resident cDCs and macrophages may impact the therapeutic efficacy of TCR gene therapy in solid tumors

    Tunable control of CAR T cell activity through tetracycline mediated disruption of protein-protein interaction

    Get PDF
    Chimeric antigen receptor (CAR) T cells are a promising form of cancer immunotherapy, although they are often associated with severe toxicities. Here, we present a split-CAR design incorporating separate antigen recognition and intracellular signaling domains. These exploit the binding between the tetracycline repressor protein and a small peptide sequence (TIP) to spontaneously assemble as a functional CAR. Addition of the FDA-approved, small molecule antibiotic minocycline, acts as an "off-switch" by displacing the signaling domain and down-tuning CAR T activity. Here we describe the optimization of this split-CAR approach to generate a CAR in which cytotoxicity, cytokine secretion and proliferation can be inhibited in a dose-dependent and reversible manner. Inhibition is effective during on-going CAR T cell activation and inhibits activation and tumor control in vivo. This work shows how optimization of split-CAR structure affects function and adds a novel design allowing easy CAR inhibition through an FDA-approved small molecule

    Single cell derived mRNA signals across human kidney tumors.

    Get PDF
    Tumor cells may share some patterns of gene expression with their cell of origin, providing clues into the differentiation state and origin of cancer. Here, we study the differentiation state and cellular origin of 1300 childhood and adult kidney tumors. Using single cell mRNA reference maps of normal tissues, we quantify reference "cellular signals" in each tumor. Quantifying global differentiation, we find that childhood tumors exhibit fetal cellular signals, replacing the presumption of "fetalness" with a quantitative measure of immaturity. By contrast, in adult cancers our assessment refutes the suggestion of dedifferentiation towards a fetal state in most cases. We find an intimate connection between developmental mesenchymal populations and childhood renal tumors. We demonstrate the diagnostic potential of our approach with a case study of a cryptic renal tumor. Our findings provide a cellular definition of human renal tumors through an approach that is broadly applicable to human cancer

    Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell

    Get PDF
    Neuroblastoma is a childhood cancer that resembles developmental stages of the neural crest. It is not established what developmental processes neuroblastoma cancer cells represent. Here, we sought to reveal the phenotype of neuroblastoma cancer cells by comparing cancer (n = 19,723) with normal fetal adrenal single-cell transcriptomes (n = 57,972). Our principal finding was that the neuroblastoma cancer cell resembled fetal sympathoblasts, but no other fetal adrenal cell type. The sympathoblastic state was a universal feature of neuroblastoma cells, transcending cell cluster diversity, individual patients, and clinical phenotypes. We substantiated our findings in 650 neuroblastoma bulk transcriptomes and by integrating canonical features of the neuroblastoma genome with transcriptional signals. Overall, our observations indicate that a pan-neuroblastoma cancer cell state exists, which may be attractive for novel immunotherapeutic and targeted avenues

    Single cell derived mRNA signals across human kidney tumors.

    Get PDF
    Funder: Department of HealthTumor cells may share some patterns of gene expression with their cell of origin, providing clues into the differentiation state and origin of cancer. Here, we study the differentiation state and cellular origin of 1300 childhood and adult kidney tumors. Using single cell mRNA reference maps of normal tissues, we quantify reference "cellular signals" in each tumor. Quantifying global differentiation, we find that childhood tumors exhibit fetal cellular signals, replacing the presumption of "fetalness" with a quantitative measure of immaturity. By contrast, in adult cancers our assessment refutes the suggestion of dedifferentiation towards a fetal state in most cases. We find an intimate connection between developmental mesenchymal populations and childhood renal tumors. We demonstrate the diagnostic potential of our approach with a case study of a cryptic renal tumor. Our findings provide a cellular definition of human renal tumors through an approach that is broadly applicable to human cancer

    Single-cell transcriptomics identifies aberrant glomerular angiogenic signalling in the early stages of WT1 kidney disease

    Get PDF
    DATA AVAILABILITY STATEMENT : Primary sequencing data reported in this paper are available on NCBI Sequence Read Archive (SRA PRJNA928337). Processed data for scRNA-seq experiments are available on Zenodo at DOI: 10.5281/zenodo.7565867. The codes generated during this study are available at Github repository https://github.com/daniyal-jafree1995/collaborations. All other unique reagents used in this study are available from the corresponding author on reasonable request.SUPPLEMENTARY MATERIALS AND METHODS : FIGURE S1. Supporting data for single-cell RNA seq analyses. FIGURE S2. Characterisation of primary cell lines. FIGURE S3. Isolation of podocytes from scRNA-seq data from additional murine models of glomerular disease for cross-disease comparison. FIGURE S4. Dysregulated genes shown by individual sample for each human glomerular pathology (source Nephroseq). TABLE S1. Differentially expressed genes in glomerular cells in Wt1R394W/+ mice. TABLE S2. Podocyte differentially expressed genes that are conserved across murine glomerular scRNA-seq datasets or unique to Wt1R394W/+. TABLE S3. Podocyte differentially expressed genes classified in ‘GO:0002376 – immune system process’ across murine glomerular scRNA-seq datasets.Please read abstract in the article.LifeArc/Great Ormond Street Children's Charity; Medical Research Centre; Kidney Research UK; British Heart Foundation; Diabetes UK; Wellcome Trust.https://onlinelibrary.wiley.com/journal/10969896hj2024Medical OncologySDG-03:Good heatlh and well-bein

    Exploration of the single-cell transcriptomic landscape identifies aberrant glomerular cell crosstalk in a murine model of WT1 kidney disease

    No full text
    AbstractThe glomerulus mediates kidney ultrafiltration through specialised epithelial cells called podocytes which line a basement membrane shared with blood capillary endothelium. Cell-cell crosstalk is critical for glomerular function, but its investigation in childhood glomerular diseases has received little attention.WT1encodes a transcription factor expressed in podocytes, whose heterozygous variants cause devastating kidney disease in childhood. We used single-cell RNA sequencing and ligand-receptor interaction analysis to resolve the glomerular transcriptional landscape of mice that carry an orthologous human mutation in WT1 (Wt1R394W/+). Podocytes were the most dysregulated cell type in early disease, with disrupted angiogenic signalling preceding glomerular capillary loss. Comparative analyses with additional murine and human glomerular disease datasets identified unique transcriptional changes in WT1 glomerular disease, reflecting a non-immunological pathology, whilst revealing a common injury signature across multiple glomerular diseases. Collectively, this work advocates vascular-based therapies over immunosuppressive drugs in the treatment of WT1 glomerular disease.</jats:p
    corecore