31 research outputs found
Validation of Compton Scattering Monte Carlo Simulation Models
Several models for the Monte Carlo simulation of Compton scattering on
electrons are quantitatively evaluated with respect to a large collection of
experimental data retrieved from the literature. Some of these models are
currently implemented in general purpose Monte Carlo systems; some have been
implemented and evaluated for possible use in Monte Carlo particle transport
for the first time in this study. Here we present first and preliminary results
concerning total and differential Compton scattering cross sections.Comment: 5 pages, 3 figures, to be published in the Proceedings of IEEE
Nuclear Science Symposium 201
Background Simulations of the Wide Field Imager of the ATHENA X-Ray Observatory
The ATHENA X-ray Observatory-IXO is a planned multinational orbiting X-ray
observatory with a focal length of 11.5m. ATHENA aims to perform pointed
observations in an energy range from 0.1 keV to 15 keV with high sensitivity.
For high spatial and timing resolution imaging and spectroscopic observations
the 640x640 pixel^2 large DePFET-technology based Wide field Imager (WFI) focal
plane detector, providing a field of view of 18 arcsec will be the main
detector. Based on the actual mechanics, thermal and shielding design we
present estimates for the WFI cosmic ray induced background obtained by the use
of Monte-Carlo simulations and possible background reduction measures.Comment: IEEE NSS MIC Conference 2011, Valencia, Spai
Validation of Geant4-based Radioactive Decay Simulation
Radioactive decays are of concern in a wide variety of applications using
Monte-Carlo simulations. In order to properly estimate the quality of such
simulations, knowledge of the accuracy of the decay simulation is required. We
present a validation of the original Geant4 Radioactive Decay Module, which
uses a per-decay sampling approach, and of an extended package for Geant4-based
simulation of radioactive decays, which, in addition to being able to use a
refactored per-decay sampling, is capable of using a statistical sampling
approach. The validation is based on measurements of calibration isotope
sources using a high purity Germanium (HPGe) detector; no calibration of the
simulation is performed. For the considered validation experiment equivalent
simulation accuracy can be achieved with per-decay and statistical sampling
Radioactive Decays in Geant4
The simulation of radioactive decays is a common task in Monte-Carlo systems
such as Geant4. Usually, a system either uses an approach focusing on the
simulations of every individual decay or an approach which simulates a large
number of decays with a focus on correct overall statistics. The radioactive
decay package presented in this work permits, for the first time, the use of
both methods within the same simulation framework - Geant4. The accuracy of the
statistical approach in our new package, RDM-extended, and that of the existing
Geant4 per-decay implementation (original RDM), which has also been refactored,
are verified against the ENSDF database. The new verified package is beneficial
for a wide range of experimental scenarios, as it enables researchers to choose
the most appropriate approach for their Geant4-based application
Refactoring, reengineering and evolution: paths to Geant4 uncertainty quantification and performance improvement
Ongoing investigations for the improvement of Geant4 accuracy and
computational performance resulting by refactoring and reengineering parts of
the code are discussed. Issues in refactoring that are specific to the domain
of physics simulation are identified and their impact is elucidated.
Preliminary quantitative results are reported.Comment: To be published in the Proc. CHEP (Computing in High Energy Physics)
201
Research in Geant4 electromagnetic physics design, and its effects on computational performance and quality assurance
The Geant4 toolkit offers a rich variety of electromagnetic physics models;
so far the evaluation of this Geant4 domain has been mostly focused on its
physics functionality, while the features of its design and their impact on
simulation accuracy, computational performance and facilities for verification
and validation have not been the object of comparable attention yet, despite
the critical role they play in many experimental applications. A new project is
in progress to study the application of new design concepts and software
techniques in Geant4 electromagnetic physics, and to evaluate how they can
improve on the current simulation capabilities. The application of a
policy-based class design is investigated as a means to achieve the objective
of granular decomposition of processes; this design technique offers various
advantages in terms of flexibility of configuration and computational
performance. The current Geant4 physics models have been re-implemented
according to the new design as a pilot project. The main features of the new
design and first results of performance improvement and testing simplification
are presented; they are relevant to many Geant4 applications, where
computational speed and the containment of resources invested in simulation
production and quality assurance play a critical role.Comment: 4 pages, 4 figures and images, to appear in proceedings of the
Nuclear Science Symposium and Medical Imaging Conference 2009, Orland
Quantifying the unknown: issues in simulation validation and their experimental impact
The assessment of the reliability of Monte Carlo simulations is discussed,
with emphasis on uncertainty quantification and the related impact on
experimental results. Methods and techniques to account for epistemic
uncertainties, i.e. for intrinsic knowledge gaps in physics modeling, are
discussed with the support of applications to concrete experimental scenarios.
Ongoing projects regarding the investigation of epistemic uncertainties in the
Geant4 simulation toolkit are reported.Comment: To be published in the Proceedings of the 13th ICATPP Conference on
Astroparticle, Particle, Space Physics and Detectors for Physics
Applications, Villa Olmo, Como, 3-7 October 201