18 research outputs found

    Photonic Berry curvature in double liquid crystal microcavities with broken inversion symmetry

    Full text link
    We investigate a photonic device consisting of two coupled optical cavities possessing Rashba-Dresselhaus spin-orbit coupling, TE-TM splitting, and linear polarisation splitting that opens a tuneable energy gap at the diabolic points of the photon dispersion; giving rise to an actively addressable local Berry curvature. The proposed architecture stems from recent advancements in the design of artificial photonic gauge fields in liquid crystal cavities [K. Rechci\'{n}ska et al., Science 366, 727 (2019)]. Our study opens new perspectives for topological photonics, room-temperature spinoptronics, and studies on the quantum geometrical structure of photonic bands in extreme settings

    Angular dependence of giant Zeeman effect for semimagnetic cavity polariton

    Get PDF
    The observation of spin-related phenomena of microcavity polaritons has been limited due to the weak Zeeman effect of nonmagnetic semiconductors. We demonstrate that the incorporation of magnetic ions into quantum wells placed in a nonmagnetic microcavity results in enhanced effects of magnetic field on exciton-polaritons. We show that in such a structure the Zeeman splitting of exciton-polaritons strongly depends on the photon-exciton detuning and polariton wave vector. Our experimental data are explained by a model where the impact of magnetic field on the lower polariton state is directly inherited from the excitonic component, and the coupling strength to the cavity photon is modified by an external magnetic field

    Magnetic Field Induced Redistribution of Exciton-Polariton Density on Confined Modes

    No full text
    The influence of magnetic field on confined exciton-polariton modes inside a semiconductor microcavity is discussed. The three-dimensional confinement for exciton-polaritons is achieved by the mesa structures confining the photonic part of polaritons. We observe a strong increase of the polariton emission intensity and we argue that this effect is due to the change of the oscillator strength of the excitonic component of polaritons and the change of the excitonic content in polariton state as the magnetic field increases

    Magnetic Field Induced Redistribution of Exciton-Polariton Density on Confined Modes

    No full text
    The influence of magnetic field on confined exciton-polariton modes inside a semiconductor microcavity is discussed. The three-dimensional confinement for exciton-polaritons is achieved by the mesa structures confining the photonic part of polaritons. We observe a strong increase of the polariton emission intensity and we argue that this effect is due to the change of the oscillator strength of the excitonic component of polaritons and the change of the excitonic content in polariton state as the magnetic field increases

    Tunable optical spin Hall effect in a liquid crystal microcavity

    No full text
    The spin Hall effect, a key enabler in the field of spintronics, underlies the capability to control spin currents over macroscopic distances. The effect was initially predicted by D'Yakonov and Perel1 and has been recently brought to the foreground by its realization in paramagnetic metals by Hirsch2 and in semiconductors3 by Sih et al. Whereas the rapid dephasing of electrons poses severe limitations to the manipulation of macroscopic spin currents, the concept of replacing fermionic charges with neutral bosons such as photons in stratified media has brought some tangible advances in terms of comparatively lossless propagation and ease of detection4–7. These advances have led to several manifestations of the spin Hall effect with light, ranging from semiconductor microcavities8,9 to metasurfaces10. To date the observations have been limited to built-in effective magnetic fields that underpin the formation of spatial spin currents. Here we demonstrate external control of spin currents by modulating the splitting between transverse electric and magnetic fields in liquid crystals integrated in microcavities.</p
    corecore