74 research outputs found
Role of various physical and chemical techniques for hollow fibre forward osmosis membrane cleaning
Ā© 2015 Balaban Desalination Publications. All rights reserved. Fouling is an inevitable phenomenon with most of the water treatment systems. Similar to RO, NF and other membrane-based systems, fouling also seriously affects the performance of low-cost forward-osmosis (FO) systems and disturbs the overall efficiency of these systems, and various cleaning practices have been evaluated to restore their designed performances. This study evaluates the performance of various physical and chemical cleaning techniques for hollow fibre forward-osmosis (HFFO) membrane. HFFO membrane was subjected to various fouling conditions using different brackish groundwater qualities and model organic foulants such as alginate, humic acid and bovine serum albumin. Results indicated that physical cleaning affects differently the flux restoration according to the type of foulants (i.e. inorganic or organic) and the crossflow rates play an important role in membrane cleaning in both membrane orientation. The higher cross flow Re values at any particular area seem important for the cleaning. With hydraulic flushing, the flux performances of HFFO were recovered fully when operated in AL-FS orientation, as high shear force helps to detach all scaling layers from the surface; however, the lower shear force did not fully restore the flux for the FS membrane in AL-DS orientation. Chemical cleaning was planned for the fouled HFFO membrane, and HCl and NaOH were used in various combination sequences. It was found that HCl did not clean the membrane used for AL-DS orientation for combined fouling. HCl cleaning (at pH 2) was found to be more effective for removing inorganic scale, whereas NaOH cleaning (at pH 11) for a similar period successfully restored the flux for all the membranes used for FS with inorganic and/or organic foulants. ethylenediamine tetra acetic acid (EDTA) was also evaluated for its cleaning performances and it was found that compared to NaOH, EDTA cleaning (1Ā mM concentration at pH 11) showed superior results in terms of membrane cleaning, as it helped to successfully restore the membrane flux in a very short time
Performances of PA hollow fiber membrane with the CTA flat sheet membrane for forward osmosis process
Ā© 2013, Ā© 2013 Balaban Desalination Publications. All rights reserved. Abstract: Fertilizer drawn forward osmosis desalination has been earlier explored using flat sheet forward osmosis (FSFO) membrane, which highlighted flux and reverse solute flux (RSF) performance. This study evaluated and compared the performances of a newly developed polyamide (PA)-based hollow fiber forward osmosis (HFFO) membrane and cellulose triacetate FSFO membrane. Both membranes were evaluated for pure water permeability, salt rejection rate (1,000Ā mg/L NaCl) in RO mode. Physical structure and morphology were further examined using scanning electron micrograph (SEM). SEM images revealed that the overall thickness of the HFFO and FSFO membranes was 152 and 91Ā Ī¼m, respectively. Flux and RSF performances of these two membranes were evaluated using nine fertilizer DS as NH4Cl, KNO3, KCl, (NH4)2SO4, Ca(NO3)2, NH4H2PO4, (NH4)2HPO4, NaNO3, and CO(NH2)2 in active layerāfeed solution membrane orientation. HFFO membrane clearly showed better performance for water flux with five DS ((NH4)2SO4, NH4H2PO4, KNO3, CO(NH2)2, and NaNO3) as they showed up to 66% increase in flux. Beside thick PA active layer of HFFO membrane, higher water flux outcome for forward osmosis (FO) process further highlighted the significance of the nature of support layer structure, the thickness and surface chemistry of the active layer of the membrane in the FO process. On the other hand, most DS showed lower RSF with HFFO membrane with the exception of Ca(NO3)2. Most of DS having monovalent cation and anions showed significantly lower RSF with HFFO membrane
Influence of the process parameters on hollow fiber-forward osmosis membrane performances
Ā© 2014 Balaban Desalination Publications. All rights reserved. Continued efforts are made in improving the performance of the low-cost forward osmosis (FO) membrane process which utilizes naturally available osmotic pressure of the draw solution (DS) as the driving force. Selection of a suitable DS and development of a better performing membrane remained the main research focus. In this study, the performance of a hollow fiber forward osmosis (HFFO) membrane was evaluated with respect to various operating conditions such as different cross-flow directions, membrane orientation, solution properties, and solution flow rates (Reynolds number). The study observed that operating parameters significantly affect the performance of the FO process. FO comparatively showed better performance at counter-current orientation. NaCl, KCl, and NH4Cl were evaluated as DS carrying common anion. Properties of the anionic part of the DS were found important for flux outcome, whereas reverse solute flux (RSF) was largely influenced by the properties of DS cationic part. FO was operated at different DS and feed solution (FS) flow rates and FO outcome was assessed for varying DS and FS Reynolds number ratio. FO showed better flux outcome as Re ratio for DS and FS decreases and vice versa. Results indicated that by adjusting FO processes conditions, HFFO membrane could achieve significantly lower specific RSF and higher water flux outcome. It was observed that using 2 M NaCl as DS and deionized water as FS, HFFO successfully delivered flux of 62.9 LMH which is significantly high compared to many FO membranes reported in the literature under the active layer-DS membrane orientation mode
Thin film composite hollow fibre forward osmosis membrane module for the desalination of brackish groundwater for fertigation
Ā© 2015 Elsevier B.V. The performance of recently developed polyamide thin film composite hollow fibre forward osmosis (HFFO) membrane module was assessed for the desalination of brackish groundwater for fertigation. Four different fertilisers were used as draw solution (DS) with real BGW from the Murray-Darling Basin in Australia. Membrane charge and its electrostatic interactions with ions played a significant role in the performance of the HFFO module using fertiliser as DS. Negatively charged polyamide layer promotes sorption of multivalent cations such as Ca2+ enhancing ion flux and membrane scaling. Inorganic scaling occurred both on active layer and inside the support layer depending on the types of fertiliser DS used resulting in severe flux decline and this study therefore underscores the importance of selecting suitable fertilisers for the fertiliser drawn forward osmosis (FDFO) process. Water flux under active layer DS membrane orientation was about twice as high as the other orientation indicating the need to further optimise the membrane support structure formation. Water flux slightly improved at higher crossflow rates due to enhanced mass transfer on the fibre lumen side. At 45% packing density, HFFO could have three times more membrane area and four times more volumetric flux output for an equivalent 8040 cellulose triacetate flat-sheet FO membrane module
Aliphatic polyketone-based thin film composite membrane with mussel-inspired polydopamine intermediate layer for high performance osmotic power generation
Polydopamine (PDA), formed from self-polymerization of dopamine, was coated on aliphatic polyketone membrane substrate prior to interfacial polymerization (IP), preparing a pressure retarded osmosis (PRO) thin film composite (TFC) membrane with a PDA interlayer. The effect of the formation of two types of PDA interlayers ā smooth and particulate ā on substrate morphology, polyamide formation, and PRO osmotic performance were investigated. Also, the effect of pH on the particulate PDA interlayer was studied. It was found that the introduction of both smooth and particulate PDA contributes to enhanced water flux and power density of the PRO membranes. pH was found to have significantly affected the formation of particulate PDA and the polyamide formation, as well. At higher pH, PDA self-polymerization led to the formation of more nanoparticles, the subsequent increase in surface roughness and decline in the polyketone substrate porosity. The particulate PDA interlayer formed looser polyamide, compared to the thinner and denser polyamide formed on pristine and smooth PDA-interlayer-coated TFC membranes. The membrane performance was evaluated using deionized water and 1.0 M NaCl as feed and draw solutions, respectively. The TFC membrane with nanoparticulate PDA layer formed at pH 9.0 exhibited the best initial water flux of 40.8 L mā2 hā1, and this membrane also showed the highest power density of 17.1 W mā2 at 25 bar. The results of this study indicate that nanoparticulate PDA interlayer formation is a simple and scalable TFC membrane development method for engineered osmosis
First record of Gammii Frog (Nanorana gammii) from the Kingdom of Bhutan
The amphibian fauna of the Himalayan Kingdom of Bhutan, sandwiched between India and China, is poorly known. Most data collected on this group of animals for the country comes from a few interested individuals or citizen scientists. Based on information provided by a citizen scientist (third author of this paper), we report for the first time on the occurrence of the Gammii Frog, Nanorana gammii (Anderson, 1871) in Zhemgang District of Central Bhutan. In this paper, we provide information on the newly discovered locality, habitat and conservation status of this species in Bhutan. We also report on the use of N. gammii by the local communities for food
Assessing membrane fouling potential of humic acid using flow field-flow fractionation
Flow field-flow fractionation (FIFFF), although a separation technique, has many similarities with the crossflow membrane filtration system, thereby making it an ideal tool for studying membrane fouling. This study reports the assessment of the fouling potential of humic acid on ultrafiltration membrane using asymmetrical FIFFF. The fouling potential of organic matter was assessed by quantifying the reversible and irreversible adsorption of humic acid on the membrane through analysis of FIFFF fractogram. A strong correlation was observed between the reversible/irreversible adsorption data analysed and the membrane fouling potential. This assessment was further complimented by moment analysis results in order to interpret the fouling potential of humic acid. However, further researches are necessary before this approach can serve as an alternative index for measuring membrane fouling propensity. (C) 2011 Elsevier B.V. All rights reservedclose131
- ā¦