102 research outputs found

    Adaptive twisting sliding mode control for quadrotor unmanned aerial vehicles

    Full text link
    © 2017 IEEE. This work addresses the problem of robust attitude control of quadcopters. First, the mathematical model of the quadcopter is derived considering factors such as nonlinearity, external disturbances, uncertain dynamics and strong coupling. An adaptive twisting sliding mode control algorithm is then developed with the objective of controlling the quadcopter to track desired attitudes under various conditions. For this, the twisting sliding mode control law is modified with a proposed gain adaptation scheme to improve the control transient and tracking performance. Extensive simulation studies and comparisons with experimental data have been carried out for a Solo quadcopter. The results show that the proposed control scheme can achieve strong robustness against disturbances while is adaptable to parametric variations

    Sensing Data Fusion for Enhanced Indoor Air Quality Monitoring

    Full text link
    Multisensor fusion of air pollutant data in smart buildings remains an important input to address the well-being and comfort perceived by their inhabitants. An integrated sensing system is part of a smart building where real-time indoor air quality data are monitored round the clock using sensors and operating in the Internet-of-Things (IoT) environment. In this work, we propose an air quality management system merging indoor air quality index (IAQI) and humidex into an enhanced indoor air quality index (EIAQI) by using sensor data on a real-time basis. Here, indoor air pollutant levels are measured by a network of waspmote sensors while IAQI and humidex data are fused together using an extended fractional-order Kalman filter (EFKF). According to the obtained EIAQI, overall air quality alerts are provided in a timely fashion for accurate prediction with enhanced performance against measurement noise and nonlinearity. The estimation scheme is implemented by using the fractional-order modeling and control (FOMCON) toolbox. A case study is analysed to prove the effectiveness and validity of the proposed approach.Comment: Published in IEEE Sensors Journal (Early Access

    Adaptive second-order sliding mode control of UAVs for civil applications

    Full text link
    Quadcopters, as unmanned aerial vehicles (UAVs), have great potential in civil applications such as surveying, building monitoring, and infrastructure condition assessment. Quadcopters, however, are relatively sensitive to noises and disturbances so that their performance may be quickly downgraded in the case of inadequate control, system uncertainties and/or external disturbances. In this study, we deal with the quadrotor low-level control by proposing a robust scheme named the adaptive second-order quasi-continuous sliding mode control (adaptive 2-QCSM). The ultimate objective is for robust attitude control of the UAV in monitoring and inspection of built infrastructure. First, the mathematical model of the quadcopter is derived considering nonlinearity, strong coupling, uncertain dynamics and external disturbances. The control design includes the selection of the sliding manifold and the development of quasi-continuous second-order sliding mode controller with an adaptive gain. Stability of the overall control system is analysed by using a global Lyapunov function for convergence of both the sliding dynamics and adaptation scheme. Extensive simulations have been carried out for evaluation. Results show that the proposed controller can achieve robustness against disturbances or parameter variations and has better tracking performance in comparison with experimental responses of a UAV in a real-time monitoring task

    Management of solar energy in microgrids using IoT-based dependable control

    Full text link
    © 2017 IEEE. Solar energy generation requires efficient monitoring and management in moving towards technologies for net-zero energy buildings. This paper presents a dependable control system based on the Internet of Things (IoT) to control and manage the energy flow of renewable energy collected by solar panels within a microgrid. Data for optimal control include not only measurements from local sensors but also meteorological information retrieved in real-time from online sources. For system fault tolerance across the whole distributed control system featuring multiple controllers, dependable controllers are developed to control and optimise the tracking performance of photovoltaic arrays to maximally capture solar radiation and maintain system resilience and reliability in real time despite failures of one or more redundant controllers due to a problem with communication, hardware or cybersecurity. Experimental results have been obtained to evaluate the validity of the proposed approach

    Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection

    Full text link
    © 2017 In built infrastructure monitoring, an efficient path planning algorithm is essential for robotic inspection of large surfaces using computer vision. In this work, we first formulate the inspection path planning problem as an extended travelling salesman problem (TSP) in which both the coverage and obstacle avoidance were taken into account. An enhanced discrete particle swarm optimization (DPSO) algorithm is then proposed to solve the TSP, with performance improvement by using deterministic initialization, random mutation, and edge exchange. Finally, we take advantage of parallel computing to implement the DPSO in a GPU-based framework so that the computation time can be significantly reduced while keeping the hardware requirement unchanged. To show the effectiveness of the proposed algorithm, experimental results are included for datasets obtained from UAV inspection of an office building and a bridge

    Angle-Encoded Swarm Optimization for UAV Formation Path Planning

    Full text link
    © 2018 IEEE. This paper presents a novel and feasible path planning technique for a group of unmanned aerial vehicles (DAVs) conducting surface inspection of infrastructure. The ultimate goal is to minimise the travel distance of DAVs while simultaneously avoid obstacles, and maintain altitude constraints as well as the shape of the UAV formation. A multiple-objective optimisation algorithm, called the Angle-encoded Particle Swarm Optimization (θ- PSO) algorithm, is proposed to accelerate the swarm convergence with angular velocity and position being used for the location of particles. The whole formation is modelled as a virtual rigid body and controlled to maintain a desired geometric shape among the paths created while the centroid of the group follows a pre-determined trajectory. Based on the testbed of 3DR Solo drones equipped with a proprietary Mission Planner, and the Internet-of- Things (loT) for multi-directional transmission and reception of data between the DAV s, extensive experiments have been conducted for triangular formation maintenance along a monorail bridge. The results obtained confirm the feasibility and effectiveness of the proposed approach

    Motion-encoded particle swarm optimization for moving target search using UAVs

    Full text link
    This paper presents a novel algorithm named the motion-encoded particle swarm optimization (MPSO) for finding a moving target with unmanned aerial vehicles (UAVs). From the Bayesian theory, the search problem can be converted to the optimization of a cost function that represents the probability of detecting the target. Here, the proposed MPSO is developed to solve that problem by encoding the search trajectory as a series of UAV motion paths evolving over the generation of particles in a PSO algorithm. This motion-encoded approach allows for preserving important properties of the swarm including the cognitive and social coherence, and thus resulting in better solutions. Results from extensive simulations with existing methods show that the proposed MPSO improves the detection performance by 24\% and time performance by 4.71 times compared to the original PSO, and moreover, also outperforms other state-of-the-art metaheuristic optimization algorithms including the artificial bee colony (ABC), ant colony optimization (ACO), genetic algorithm (GA), differential evolution (DE), and tree-seed algorithm (TSA) in most search scenarios. Experiments have been conducted with real UAVs in searching for a dynamic target in different scenarios to demonstrate MPSO merits in a practical application.Comment: Applied Soft Computing, 202

    Energy cost optimization in microgrids using model predictive control and mixed integer linear programming

    Full text link
    © 2019 IEEE. This paper presents a model predictive control (MPC) approach based on the mixed integer linear programming (MILP) to develop an optimal power management strategy (PMS) for minimizing the electricity bill of commercial buildings in a domestic on-grid system. The optimal PMS is first formulated as a MILP-MPC with time-varying constraints. The constraints are then linearized at each sampling time so that a receding horizon principle can be used to determine the control input applied to the plant and update the model. The time-varying efficiency of power electronic converters is evaluated for each time interval and assumed to be persistent for the prediction time horizon. The numerical results show that the proposed MILP-MPC strategy with variable efficiency is effective in utilizing photovoltaic power generation to save the cost on electricity for buildings

    Crack detection using enhanced thresholding on UAV based collected images

    Full text link
    © 2018 Australasian Robotics and Automation Association. All rights reserved. This paper proposes a thresholding approach for crack detection in an unmanned aerial vehicle (UAV) based infrastructure inspection system. The proposed algorithm performs recursively on the intensity histogram of UAV-taken images to exploit their crack-pixels appearing at the low intensity interval. A quantified criterion of interclass contrast is proposed and employed as an object cost and stop condition for the recursive process. Experiments on different datasets show that our algorithm outperforms different segmentation approaches to accurately extract crack features of some commercial buildings

    Automatic interpretation of unordered point cloud data for UAV navigation in construction

    Full text link
    © 2016 IEEE. The objective of this work is to develop a data processing system that can automatically generate waypoints for navigation of an unmanned aerial vehicle (UAV) to inspect surfaces of structures like buildings and bridges. The input includes data recorded by two 2D laser scanners, orthogonally mounted on the UAV, and an inertial measurement unit (IMU). To achieve the goal, algorithms are developed to process the data collected. They are separated into three major groups: (i) the data registration and filtering to generate a 3D model of the structure and control the density of point clouds for data completeness enhancement; (ii) the surface and obstacle detection to assist the UAV in monitoring tasks; and (iii) the waypoint generation to set the flight path. Experiments on different data sets show that the developed system is able to reconstruct a 3D point cloud of the structure, extract its surfaces and objects, and generate waypoints for the UAV to accomplish inspection tasks
    • …
    corecore