41 research outputs found
Long-term air pollution exposure and self-reported morbidity: A longitudinal analysis from the Thai cohort study (TCS)
[Background] Several studies have shown the health effects of air pollutants, especially in China, North American and Western European countries. But longitudinal cohort studies focused on health effects of long-term air pollution exposure are still limited in Southeast Asian countries where sources of air pollution, weather conditions, and demographic characteristics are different. The present study examined the association between long-term exposure to air pollution and self-reported morbidities in participants of the Thai cohort study (TCS) in Bangkok metropolitan region (BMR), Thailand. [Methods] This longitudinal cohort study was conducted for 9 years from 2005 to 2013. Self-reported morbidities in this study included high blood pressure, high blood cholesterol, and diabetes. Air pollution data were obtained from the Thai government Pollution Control Department (PCD). Particles with diameters ≤10 μm (PM₁₀), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), and carbon monoxide (CO) exposures were estimated with ordinary kriging method using 22 background and 7 traffic monitoring stations in BMR during 2005–2013. Long-term exposure periods to air pollution for each subject was averaged as the same period of person-time. Cox proportional hazards models were used to examine the association between long-term air pollution exposure with self-reported high blood pressure, high blood cholesterol, diabetes. Results of self-reported morbidity were presented as hazard ratios (HRs) per interquartile range (IQR) increase in PM₁₀, O₃, NO₂, SO₂, and CO. [Results] After controlling for potential confounders, we found that an IQR increase in PM₁₀ was significantly associated with self-reported high blood pressure (HR = 1.13, 95% CI: 1.04, 1.23) and high blood cholesterol (HR = 1.07, 95%CI: 1.02, 1.12), but not with diabetes (HR = 1.05, 95%CI: 0.91, 1.21). SO₂ was also positively associated with self-reported high blood pressure (HR = 1.22, 95%CI: 1.08, 1.38), high blood cholesterol (HR = 1.20, 95%CI: 1.11, 1.30), and diabetes (HR = 1.21, 95%CI: 0.92, 1.60). Moreover, we observed a positive association between CO and self-reported high blood pressure (HR = 1.07, 95%CI: 1.00, 1.15), but not for other diseases. However, self-reported morbidities were not associated with O₃ and NO₂. [Conclusions] Long-term exposure to air pollution, especially for PM₁₀ and SO₂ was associated with self-reported high blood pressure, high blood cholesterol, and diabetes in subjects of TCS. Our study supports that exposure to air pollution increases cardiovascular disease risk factors for younger population
Fungal Planet description sheets: 1042-1111
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects’ frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.) from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.) on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.) from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes
Fungal Planet description sheets: 1042–1111
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.)from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.)on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.)from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes
Fungal Planet description sheets: 1042–1111
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.)from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.)on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.)from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes
Fungal Planet description sheets: 1284–1382
Novel species of fungi described in this study include those from various countries as follows: Antartica, Cladosporium austrolitorale from coastal sea sand. Australia, Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium, Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil, Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada, Cuphophyllus bondii fromagrassland. Croatia, Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus, Amanita exilis oncalcareoussoil. Czech Republic, Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark, Lasiosphaeria deviata on pieces of wood and herbaceousdebris. Dominican Republic, Calocybella goethei among grass on a lawn. France (Corsica) , Inocybe corsica onwetground. France (French Guiana) , Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. Germany, Paramicrothecium sambuci (incl. Paramicrothecium gen. nov.)ondeadstemsof Sambucus nigra. India, Aureobasidium microtermitis from the gut of a Microtermes sp. termite, Laccaria diospyricola on soil and Phylloporia tamilnadensis on branches of Catunaregam spinosa. Iran, Pythium serotinoosporum from soil under Prunus dulcis. Italy, Pluteus brunneovenosus on twigs of broad leaved trees on the ground. Japan, Heterophoma rehmanniae on leaves of Rehmannia glutinosa f. hueichingensis. Kazakhstan, Murispora kazachstanica from healthy roots of Triticum aestivum. Namibia, Caespitomonium euphorbiae (incl. Caespitomonium gen. nov.)from stems of an Euphorbia sp. Netherlands, Alfaria junci, Myrmecridium junci, Myrmecridium juncicola, Myrmecridium juncigenum, Ophioceras junci, Paradinemasporium junci (incl. Paradinemasporium gen. nov.), Phialoseptomonium junci, Sporidesmiella juncicola, Xenopyricularia junci and Zaanenomyces quadripartis (incl. Zaanenomyces gen. nov.), fromdeadculmsof Juncus effusus, Cylindromonium everniae and Rhodoveronaea everniae from Evernia prunastri, Cyphellophora sambuci and Myrmecridium sambuci from Sambucus nigra, Kiflimonium junci, Saro cladium junci, Zaanenomyces moderatricis academiae and Zaanenomyces versatilis from dead culms of Juncus inflexus, Microcera physciae from Physcia tenella, Myrmecridium dactylidis from dead culms of Dactylis glomerata, Neochalara spiraeae and Sporidesmium spiraeae from leaves of Spiraea japonica, Neofabraea salicina from Salix sp., Paradissoconium narthecii (incl. Paradissoconium gen. nov.)from dead leaves of Narthecium ossifragum, Polyscytalum vaccinii from Vaccinium myrtillus, Pseudosoloacrosporiella cryptomeriae (incl. Pseudosoloacrosporiella gen. nov.)fromleavesof Cryptomeria japonica, Ramularia pararhabdospora from Plantago lanceolata, Sporidesmiella pini from needles of Pinus sylvestris and Xenoacrodontium juglandis (incl. Xenoacrodontium gen. nov. and Xenoacrodontiaceae fam. nov.)from Juglans regia. New Zealand, Cryptometrion metrosideri from twigs of Metrosideros sp., Coccomyces pycnophyllocladi from dead leaves of Phyllocladus alpinus, Hypoderma aliforme from fallen leaves Fuscopora solandri and Hypoderma subiculatum from dead leaves Phormium tenax. Norway, Neodevriesia kalakoutskii from permafrost and Variabilispora viridis from driftwood of Picea abies. Portugal, Entomortierella hereditatis from abio film covering adeteriorated limestone wall. Russia, Colpoma junipericola from needles of Juniperus sabina, Entoloma cinnamomeum on soil in grasslands, Entoloma verae on soil in grasslands, Hyphodermella pallidostraminea on a dry dead branch of Actinidia sp., Lepiota sayanensis onlitterinamixedforest, Papiliotrema horticola from Malus communis , Paramacroventuria ribis (incl. Paramacroventuria gen. nov.)fromleaves of Ribes aureum and Paramyrothecium lathyri from leaves of Lathyrus tuberosus. South Africa, Harzia combreti from leaf litter of Combretum collinum ssp. sulvense, Penicillium xyleborini from Xyleborinus saxesenii , Phaeoisaria dalbergiae from bark of Dalbergia armata, Protocreopsis euphorbiae from leaf litter of Euphorbia ingens and Roigiella syzygii from twigs of Syzygium chordatum. Spain, Genea zamorana on sandy soil, Gymnopus nigrescens on Scleropodium touretii, Hesperomyces parexochomi on Parexochomus quadriplagiatus, Paraphoma variabilis from dung, Phaeococcomyces kinklidomatophilus from a blackened metal railing of an industrial warehouse and Tuber suaveolens in soil under Quercus faginea. Svalbard and Jan Mayen, Inocybe nivea associated with Salix polaris. Thailand, Biscogniauxia whalleyi oncorticatedwood. UK, Parasitella quercicola from Quercus robur. USA , Aspergillus arizonicus from indoor air in a hospital, Caeliomyces tampanus (incl. Caeliomyces gen. nov.)fromoffice dust, Cippumomyces mortalis (incl. Cippumomyces gen. nov.)fromatombstone, Cylindrium desperesense from air in a store, Tetracoccosporium pseudoaerium from air sample in house, Toxicocladosporium glendoranum from air in a brick room, Toxicocladosporium losalamitosense from air in a classroom, Valsonectria portsmouthensis from airinmen'slockerroomand Varicosporellopsis americana from sludge in a water reservoir. Vietnam, Entoloma kovalenkoi on rotten wood, Fusarium chuoi inside seed of Musa itinerans , Micropsalliota albofelina on soil in tropical evergreen mixed forest sand Phytophthora docyniae from soil and roots of Docynia indica. Morphological and culture characteristics are supported by DNA barcodes
Fungal Planet description sheets: 1284-1382
Novel species of fungi described in this study include those from various countries as follows: Antartica, Cladosporium austrolitorale from coastal sea sand. Australia, Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium, Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil, Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada, Cuphophyllus bondii fromagrassland. Croatia, Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus, Amanita exilis oncalcareoussoil. Czech Republic, Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark, Lasiosphaeria deviata on pieces of wood and herbaceousdebris. Dominican Republic, Calocybella goethei among grass on a lawn. France (Corsica) , Inocybe corsica onwetground. France (French Guiana) , Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. [...]P.R. Johnston thanks J. Sullivan (Lincoln University)
for the habitat image of Kowai Bush, Duckchul Park (Manaaki Whenua –
Landcare Research) for the DNA sequencing, and the New Zealand Department
of Conservation for permission to collect the specimens; this research
was supported through the Manaaki Whenua – Landcare Research Biota
Portfolio with funding from the Science and Innovation Group of the New
Zealand Ministry of Business, Innovation and Employment. V. Hubka was
supported by the Czech Ministry of Health (grant number NU21-05-00681),
and is grateful for the support from the Japan Society for the Promotion of
Science – grant-in-aid for JSPS research fellow (grant no. 20F20772).
K. Glässnerová was supported by the Charles University Grant Agency (grant
No. GAUK 140520). J. Trovão and colleagues were financed by FEDERFundo
Europeu de Desenvolvimento Regional funds through the COMPETE
2020 – Operational Programme for Competitiveness and Internationalisation
(POCI), and by Portuguese funds through FCT – Fundação para a Ciência
e a Tecnologia in the framework of the project POCI-01-0145-FEDER-PTDC/
EPH-PAT/3345/2014. This work was carried out at the R&D Unit Centre for
Functional Ecology – Science for People and the Planet (CFE), with reference
UIDB/04004/2020, financed by FCT/MCTES through national funds
(PIDDAC). J. Trovão was also supported by POCH – Programa Operacional
Capital Humano (co-funding by the European Social Fund and national
funding by MCTES), through a ‘FCT – Fundação para a Ciência e
Tecnologia’ PhD research grant (SFRH/BD/132523/2017). D. Haelewaters
acknowledges support from the Research Foundation – Flanders (Junior
Postdoctoral Fellowship 1206620N). M. Loizides and colleagues are grateful
to Y. Cherniavsky for contributing collections AB A12-058-1 and AB A12-
058-2, and Á. Kovács and B. Kiss for their help with molecular studies of
these specimens. C. Zmuda is thanked for assisting with the collection of
ladybird specimens infected with Hesperomyces parexochomi. A.V. Kachalkin
and colleagues were supported by the Russian Science Foundation
(grant No. 19-74-10002). The study of A.M. Glushakova was carried out as
part of the Scientific Project of the State Order of the Government of Russian
Federation to Lomonosov Moscow State University No. 121040800174-6.
S. Nanu acknowledges the Kerala State Council for Science, Technology
and Environment (KSCSTE) for granting a research fellowship and is grateful
to the Chief Conservator of Forests and Wildlife for giving permission to
collect fungal samples. A. Bañares and colleagues thank L. Monje and
A. Pueblas of the Department of Drawing and Scientific Photography at the
University of Alcalá for their help in the digital preparation of the photographs,
and J. Rejos, curator of the AH herbarium for his assistance with the specimens
examined in the present study. The research of V. Antonín received
institutional support for long-term conceptual development of research institutions
provided by the Ministry of Culture (Moravian Museum, ref.
MK000094862). The studies of E.F. Malysheva, V.F. Malysheva, O.V. Morozova,
and S.V. Volobuev were carried out within the framework of a research
project of the Komarov Botanical Institute RAS, St Petersburg, Russia
(АААА-А18-118022090078-2) using equipment of its Core Facility Centre
‘Cell and Molecular Technologies in Plant Science’.The study of A.V. Alexandrova
was carried out as part of the Scientific Project of the State Order
of the Government of Russian Federation to Lomonosov Moscow State
University No. 121032300081-7. The Kits van Waveren Foundation (Rijksherbariumfonds
Dr E. Kits van Waveren, Leiden, Netherlands) contributed
substantially to the costs of sequencing and travelling expenses for
M.E. Noordeloos. The work of B. Dima was partly supported by the ÚNKP-
20-4 New National Excellence Program of the Ministry for Innovation and
Technology from the source of the National Research, Development and
Innovation Fund. The work of L. Nagy was supported by the ‘Momentum’
program of the Hungarian Academy of Sciences (contract No. LP2019-
13/2019 to L.G.N.). G.A. Kochkina and colleagues acknowledge N. Demidov
for the background photograph, and N. Suzina for the SEM photomicrograph.
The research of C.M. Visagie and W.J. Nel was supported by the National
Research Foundation grant no 118924 and SFH170610239162. C. Gil-Durán
acknowledges Agencia Nacional de Investigación y Desarrollo, Ministerio
de Ciencia, Tecnología, Conocimiento e Innovación, Gobierno de Chile, for
grant ANID – Fondecyt de Postdoctorado 2021 – N° 3210135. R. Chávez
and G. Levicán thank DICYT-USACH and acknowledges the grants INACH
RG_03-14 and INACH RT_31-16 from the Chilean Antarctic Institute, respectively.
S. Tiwari and A. Baghela would like to acknowledge R. Avchar
and K. Balasubramanian from the Agharkar Research Institute, Pune, Maharashtra
for helping with the termite collection. S. Tiwari is also thankful to
the University Grants Commission, Delhi (India) for a junior research fellowship
(827/(CSIR-UGC NET DEC.2017)). R. Lebeuf and I. Saar thank D. and
H. Spencer for collecting
and photographing the holotype of C. bondii, and
R. Smith for photographing the habitat. A. Voitk is thanked for helping with
the colour plate and review of the manuscript, and the Foray Newfoundland
and Labrador for providing the paratype material. I. Saar was supported by
the Estonian Research Council (grant PRG1170) and the European Regional
Development Fund (Centre of Excellence EcolChange). M.P.S. Câmara
acknowledges the ‘Conselho Nacional de Desenvolvimento Científico
e Tecnológico – CNPq’ for the research productivity fellowship, and financial
support (Universal number 408724/2018-8). W.A.S. Vieira acknowledges
the ‘Coordenação de Aperfeiçoamento Pessoal de Ensino Superior – CAPES’
and the ‘Programa Nacional de Pós-Doutorado/CAPES – PNPD/CAPES’ for
the postdoctoral fellowship. A.G.G. Amaral acknowledges CNPq, and
A.F. Lima and I.G. Duarte acknowledge CAPES for the doctorate fellowships.
F. Esteve-Raventós and colleagues were financially supported by FEDER/
Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación
(Spain)/ Project CGL2017-86540-P. The authors would like to
thank L. Hugot and N. Suberbielle (Conservatoire Botanique National de
Corse, Office de l’Environnement de la Corse, Corti) for their help. The research
of E. Larsson is supported by The Swedish Taxonomy Initiative, SLU
Artdatabanken, Uppsala. Financial support was provided to R.J. Ferreira by
the National Council for Scientific and Technological Development (CNPq),
and to I.G. Baseia, P.S.M. Lúcio and M.P. Martín by the National Council for
Scientific and Technological Development (CNPq) under CNPq-Universal
2016 (409960/2016-0) and CNPq-visiting researcher (407474/2013-7).
J. Cabero and colleagues wish to acknowledge A. Rodríguez for his help to
describe Genea zamorana, as well as H. Hernández for sharing information
about the vegetation of the type locality. S. McMullan-Fisher and colleagues
acknowledge K. Syme (assistance with illustrations), J. Kellermann (translations),
M. Barrett (collection, images and sequences), T. Lohmeyer (collection
and images) and N. Karunajeewa (for prompt accessioning). This research
was supported through funding from Australian Biological Resources Study
grant (TTC217-06) to the Royal Botanic Gardens Victoria. The research of
M. Spetik and co-authors was supported by project No. CZ.02.1.01/0.0/0.0
/16_017/0002334. N. Wangsawat and colleagues were partially supported
by NRCT and the Royal Golden Jubilee Ph.D. programme, grant number
PHD/0218/2559. They are thankful to M. Kamsook for the photograph of the
Phu Khiao Wildlife Sanctuary and P. Thamvithayakorn for phylogenetic illustrations.
The study by N.T. Tran and colleagues was funded by Hort Innovation
(Grant TU19000). They also thank the turf growers who supported
their surveys and specimen collection. N. Matočec, I. Kušan, A. Pošta,
Z. Tkalčec and A. Mešić thank the Croatian Science Foundation for their
financial support under the project grant HRZZ-IP-2018-01-1736 (ForFungiDNA).
A. Pošta thanks the Croatian Science Foundation for their support
under the grant HRZZ-2018-09-7081. A. Morte is grateful to Fundación
Séneca – Agencia de Ciencia y Tecnología de la Región de Murcia (20866/
PI/18) for financial support. The research of G. Akhmetova, G.M. Kovács,
B. Dima and D.G. Knapp was supported by the National Research, Development
and Innovation Office, Hungary (NKFIH KH-130401 and K-139026),
the ELTE Thematic Excellence Program 2020 supported by the National
Research, Development and Innovation Office (TKP2020-IKA-05) and the
Stipendium Hungaricum Programme. The support of the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences and the Bolyai+
New National Excellence Program of the Ministry for Innovation and Technology
to D.G. Knapp is highly appreciated. F.E. Guard and colleagues are
grateful to the traditional owners, the Jirrbal and Warungu people, as well
as L. and P. Hales, Reserve Managers, of the Yourka Bush Heritage Reserve.
Their generosity, guidance, and the opportunity to explore the Bush Heritage
Reserve on the Einasleigh Uplands in far north Queensland is greatly appreciated.
The National Science Foundation (USA) provided funds
(DBI#1828479) to the New York Botanical Garden for a scanning electron
microscope used for imaging the spores. V. Papp was supported by the
ÚNKP-21-5 New National Excellence Program of the Ministry for Innovation
and Technology from the National Research, Development and Innovation
Fund of Hungary. A.N. Miller thanks the WM Keck Center at the University
of Illinois Urbana – Champaign for sequencing Lasiosphaeria deviata.
J. Pawłowska acknowledges support form National Science Centre, Poland
(grant Opus 13 no 2017/25/B/NZ8/00473). The research of T.S. Bulgakov
was carried out as part of the State Research Task of the Subtropical Scientific
Centre of the Russian Academy of Sciences (Theme No. 0492-2021-
0007). K. Bensch (Westerdijk Fungal Biodiversity Institute, Utrecht) is thanked
for correcting the spelling of various Latin epithets.Peer reviewe
A new representative of star-shaped fungi: Astraeus sirindhorniae sp. nov. from Thailand
Phu Khieo Wildlife Sanctuary (PKWS) is a major hotspot of biological diversity in Thailand but its fungal diversity has not
been thouroughly explored. A two-year macrofungal study of this remote locality has resulted in the recognition of a new
species of a star-shaped gasteroid fungus in the genus Astraeus. This fungus has been identified based on a morphological
approach and the molecular study of five loci (LSU nrDNA, 5.8S nrDNA, RPB1, RPB2 and EF1-a). Multigene phylogenetic
analysis of this new species places it basal relative to other Astraeus, providing additional evidence for the SE Asian orgin of
the genus. The fungus is named in honour of Her Majesty Princess Sirindhorn on the occasion the 84th birthday of her
father, who have both been supportive of natural heritage studies in Thailand.Peer Reviewe