2 research outputs found
Intracrine Cysteinyl Leukotriene Receptor–mediated Signaling of Eosinophil Vesicular Transport–mediated Interleukin-4 Secretion
We investigated whether cysteinyl leukotrienes (cysLT) are intracrine signal transducers that regulate human eosinophil degranulation mechanisms. Interleukin (IL)-16, eotaxin, and RANTES stimulate vesicular transport–mediated release of preformed, granule-derived IL-4 and RANTES from eosinophils and the synthesis at intracellular lipid bodies of LTC4, the dominant 5-lipoxygenase–derived eicosanoid in eosinophils. 5-Lipoxygenase inhibitors blocked IL-16–, eotaxin-, and RANTES-induced IL-4 release; but neither exogenous LTC4, LTD4, nor LTE4 elicited IL-4 release. Only after membrane permeabilization enabled cysLTs to enter eosinophils did LTC4 and LTD4 stimulate IL-4, but not RANTES, release. LTC4-elicited IL-4 release was pertussis toxin inhibitable, but inhibitors of the two known G protein–coupled cysLT receptors (cysLTRs) (CysLT1 and CysLT2) did not block LTC4-elicited IL-4 release. LTC4 was 10-fold more potent than LTD4 and at low concentrations (0.3–3 nM) elicited, and at higher concentrations (>3 nM) inhibited, IL-4 release from permeabilized eosinophils. Likewise with intact eosinophils, LTC4 export inhibitors, which increased intracellular LTC4, inhibited eotaxin-elicited IL-4 release. Thus, LTC4 acts, via an intracellular cysLTR distinct from CysLT1 or CysLT2, as a signal transducer to selectively regulate IL-4 release. These results demonstrate that LTC4, well recognized as a paracrine mediator, may also dynamically govern inflammatory and immune responses as an intracrine mediator of eosinophil cytokine secretion