857 research outputs found
Bacterial susceptibility and resistance to modelin-5.
Modelin-5 (M5-NH ) killed with a minimum lethal concentration (MLC) of 5.86 μM and strongly bound its cytoplasmic membrane (CM) with a of 23.5 μM. The peptide adopted high levels of amphiphilic α-helical structure (75.0%) and penetrated the CM hydrophobic core (8.0 mN m ). This insertion destabilised CM structure increased lipid packing and decreased fluidity (Δ 0) and promoted only low levels of lysis (24.3%). The insertion and lysis of the CM by M5-NH showed a strong negative correlation with its lysyl phosphatidylglycerol (Lys-PG) content ( > 0.98). In combination, these data suggested that Lys-PG mediated mechanisms inhibited the membranolytic action of M5-NH against , thereby rendering the organism resistant to the peptide. These results are discussed in relation to structure/function relationships of M5-NH and CM lipids that underpin bacterial susceptibility and resistance to the peptide
Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy
The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles
Burst avalanches in solvable models of fibrous materials
We review limiting models for fracture in bundles of fibers, with
statistically distributed thresholds for breakdown of individual fibers. During
the breakdown process, avalanches consisting of simultaneous rupture of several
fibers occur, and the distribution of the magnitude of
such avalanches is the central characteristics in our analysis. For a bundle of
parallel fibers two limiting models of load sharing are studied and contrasted:
the global model in which the load carried by a bursting fiber is equally
distributed among the surviving members, and the local model in which the
nearest surviving neighbors take up the load. For the global model we
investigate in particular the conditions on the threshold distribution which
would lead to anomalous behavior, i.e. deviations from the asymptotics
, known to be the generic behavior. For the local
model no universal power-law asymptotics exists, but we show for a particular
threshold distribution how the avalanche distribution can nevertheless be
explicitly calculated in the large-bundle limit.Comment: 28 pages, RevTeX, 3 Postscript figure
Fiber Breakage Model for Carbon Composite Stress Rupture Phenomenon: Theoretical Development and Applications
Stress rupture failure of Carbon Composite Overwrapped Pressure Vessels (COPVs) is of serious concern to Science Mission and Constellation programs since there are a number of COPVs on board space vehicles with stored gases under high pressure for long durations of time. It has become customary to establish the reliability of these vessels using the so called classic models. The classical models are based on Weibull statistics fitted to observed stress rupture data. These stochastic models cannot account for any additional damage due to the complex pressure-time histories characteristic of COPVs being supplied for NASA missions. In particular, it is suspected that the effects of proof test could significantly reduce the stress rupture lifetime of COPVs. The focus of this paper is to present an analytical appraisal of a model that incorporates damage due to proof test. The model examined in the current paper is based on physical mechanisms such as micromechanics based load sharing concepts coupled with creep rupture and Weibull statistics. For example, the classic model cannot accommodate for damage due to proof testing which every flight vessel undergoes. The paper compares current model to the classic model with a number of examples. In addition, several applications of the model to current ISS and Constellation program issues are also examined
Bayes Analysis and Reliability Implications of Stress-Rupture Testing a Kevlar/Epoxy COPV using Temperature and Pressure Acceleration
Composite Overwrapped Pressure Vessel (COPVs) that have survived a long service time under pressure generally must be recertified before service is extended. Sometimes lifetime testing is performed on an actual COPV in service in an effort to validate the reliability model that is the basis for certifying the continued flight worthiness of its sisters. Currently, testing of such a Kevlar49(registered TradeMark)/epoxy COPV is nearing completion. The present paper focuses on a Bayesian statistical approach to analyze the possible failure time results of this test and to assess the implications in choosing between possible model parameter values that in the past have had significant uncertainty. The key uncertain parameters in this case are the actual fiber stress ratio at operating pressure, and the Weibull shape parameter for lifetime; the former has been uncertain due to ambiguities in interpreting the original and a duplicate burst test. The latter has been uncertain due to major differences between COPVs in the data base and the actual COPVs in service. Any information obtained that clarifies and eliminates uncertainty in these parameters will have a major effect on the predicted reliability of the service COPVs going forward. The key result is that the longer the vessel survives, the more likely the more optimistic stress ratio is correct. At the time of writing, the resulting effect on predicted future reliability is dramatic, increasing it by about one nine , that is, reducing the probability of failure by an order of magnitude. However, testing one vessel does not change the uncertainty on the Weibull shape parameter for lifetime since testing several would be necessary
Quantum Cryptography Based on the Time--Energy Uncertainty Relation
A new cryptosystem based on the fundamental time--energy uncertainty relation
is proposed. Such a cryptosystem can be implemented with both correlated photon
pairs and single photon states.Comment: 5 pages, LaTex, no figure
Reliability Considerations for Composite Overwrapped Pressure Vessels on Spacecraft
Composite Overwrapped Pressure Vessels (COPVs) are used to store gases under high pressure onboard spacecraft. These are used for a variety of purposes such as propelling liquid fuel etc, Kevlar, glass, Carbon and other more recent fibers have all been in use to overwrap the vessels. COPVs usually have a thin metallic liner with the primary purpose of containing the gases and prevent any leakage. The liner is overwrapped with filament wound composite such as Kevlar, Carbon or Glass fiber. Although the liner is required to perform in the leak before break mode making the failure a relatively benign mode, the overwrap can fail catastrophically under sustained load due to stress rupture. It is this failure mode that is of major concern as the stored energy of such vessels is often great enough ta cause loss of crew and vehicle. The present paper addresses some of the reliability concerns associated specifically with Kevlar Composite Overwrapped Pressure Vessels. The primary focus of the paper is on how reliability of COPV's are established for the purpose of deciding in general their flight worthiness and continued use. Analytical models based on existing design data will be presented showing how to achieve the required reliability metric to the end of a specific period of performance. Uncertainties in the design parameters and how they affect reliability and confidence intervals will be addressed as well. Some trade studies showing how reliability changes with time during a program period will be presented
Atom-photon entanglement generation and distribution
We extend an earlier model by Law {\it et al.} \cite{law} for a cavity QED
based single-photon-gun to atom-photon entanglement generation and
distribution. We illuminate the importance of a small critical atom number on
the fidelity of the proposed operation in the strong coupling limit. Our result
points to a promisingly high purity and efficiency using currently available
cavity QED parameters, and sheds new light on constructing quantum computing
and communication devices with trapped atoms and high Q optical cavities.Comment: 7 fig
A Comparison of Various Stress Rupture Life Models for Orbiter Composite Pressure Vessels and Confidence Intervals
In conjunction with a recent NASA Engineering and Safety Center (NESC) investigation of flight worthiness of Kevlar Overwrapped Composite Pressure Vessels (COPVs) on board the Orbiter, two stress rupture life prediction models were proposed independently by Phoenix and by Glaser. In this paper, the use of these models to determine the system reliability of 24 COPVs currently in service on board the Orbiter is discussed. The models are briefly described, compared to each other, and model parameters and parameter uncertainties are also reviewed to understand confidence in reliability estimation as well as the sensitivities of these parameters in influencing overall predicted reliability levels. Differences and similarities in the various models will be compared via stress rupture reliability curves (stress ratio vs. lifetime plots). Also outlined will be the differences in the underlying model premises, and predictive outcomes. Sources of error and sensitivities in the models will be examined and discussed based on sensitivity analysis and confidence interval determination. Confidence interval results and their implications will be discussed for the models by Phoenix and Glaser
Unambiguous Discrimination Between Linearly Dependent States with Multiple Copies
A set of quantum states can be unambiguously discriminated if and only if
they are linearly independent. However, for a linearly dependent set, if C
copies of the state are available, then the resulting C particle states may
form a linearly independent set, and be amenable to unambiguous discrimination.
We obtain necessary and sufficient conditions for the possibility of
unambiguous discrimination between N states given that C copies are available
and that the single copies span a D dimensional space. These conditions are
found to be identical for qubits. We then examine in detail the linearly
dependent trine ensemble. The set of C>1 copies of each state is a set of
linearly independent lifted trine states. The maximum unambiguous
discrimination probability is evaluated for all C>1 with equal a priori
probabilities.Comment: 12 Pages RevTeX 4, 1 EPS figur
- …