43 research outputs found

    Formulation of the membership function and determination of the input of fuzzy loads in the structural fuzzy analyzing problem

    Get PDF
    The fuzzy analyzing process consists of different steps. In this paper, the author considers only the method for formulation of the membership function of fuzzy loads acting on the structure. Based on the membership function of fuzzy loads, the combinations of deterministic of the regression analyzing process will be determined. The membership function of fuzzy loads is selected by the triangular membership function. It is in conformity with the concept on selection of loads in the design standards. The combination of inputs for the analyzing process will be determined, based on the number of present times of the value of input parameters (including the deterministic parameters, fuzzy parameters and the random ones) in the schema of analysis. The number of present times of input parameters is either proportional to value of the corresponding membership function or to the value of the probabilistic density function. A method for determining the appropriate combination of deterministic inputs so that each input parameter will present only one time in each combination is proposed. To illustrate the proposed method, an example on the determination of input combinations of tornado's velocity in Vietnam is presented

    A METHOD FOR TECHNICAL DIAGNOSIS OF CONSTRUCTION

    Get PDF
    Non

    A new method for determination of the reliability index of distributed parameter systems

    Get PDF
    In this paper, a method to determine the reliability - index of distributed systems is proposed. By the new method, instead of finding jointly probability depending on multi - conditions of inequalities one can find probability depending on only one inequality and no requiring to know jointly density function of basic variables. Therefore, it is very favourable for the calculation of the reliability - index of mechanical systems with distributed parameter. For illustrating the proposed method, a simple example is considere

    An extension of the E. Melan's shakedown theorem of the elasto-plastic structure

    Get PDF
    Non

    On the problem of optimal structure design subjected to regular lifetime criterion

    Get PDF
    The objective function of problem of optimal structure design can be chosen differently. For example the objective function can be the weight, the net cost, the regular resistance, the regular reliability, an so on. In this paper the problem of optimal structure design, subjected to regular lifetime condition for all elements is considered. The author sets up the problem, proposes an iterative method for solving and apply the obtained results to a simple example

    A variable separation method for the calculation of the reliability of construction

    Get PDF
    In this paper, a variable separation method for determining the reliability of construction is proposed. Therefore, the reliability is a multiplication of two probabilities: The probability of the occurrence of load and the probability of construction in the condition the load has a determined value

    Formation of secondary nonsulfide zinc ore in Cho Dien Pb-Zn deposits

    Get PDF
    In Viet Nam, non-sulfide zinc ore in the Cho Dien deposit has been exploited for a long time. Up to the present, zinc ore remains the major exploited ore in Cho Dien. There are numerous studies of Pb-Zn ore in Cho Dien. However, most of the studies have dedicated only to description of mineralogical and chemical composition of Pb-Zn ore. There has been no publication on this non-sulfide zinc ore. Based on the mineralogical studies, the content of Pb and Zn in groundwater determined by reflective microscope, SEM, EPMA and ICP-MS methods, the study explained the formation of secondary non-sulfide zinc ore in the Cho Dien deposit. Strong weathering process makes the upper part of ore bodies completely oxidized. Difference in geochemical behavior of lead (Pb) and zinc (Zn) in the oxidation process of Pb-Zn ore is the reason to form non-sulfide zinc ore in the Cho Dien deposit. Oxidation of primary Pb-Zn ore is mainly sphalerite, pyrite, galena minerals which creates a low pH environment and transforms of zinc from immobile (sphalerite - ZnS) to mobile (Zn2+) and retained in solution under acid pH conditions whereas lead has the tendency to form soluble minerals (anglesite, cerussite). The acid neutralization actions of the surrounding rocks make zinc precipitate, to form secondary non-sulfide zinc minerals.ReferencesAndreas Nuspl, 2009. Genesis of nonsulfide zinc deposits and their future utilization (www.geo.tu-frei berg.de/oberseminar/OS_09/Andreas_Nuspl.pdf.Boland M.B., et al., 2003. The Shaimerden supergene zinc deposit, Kazakhstan: Economic Geology, 98(4), 787-795.Chau N.D., Jadwiga P., Adam P., D.V. Hao, L.K. Phon, J. Paweł, 2017. General characteristics of rare earth and radioactive elements in Dong Pao deposit, Lai Chau, Vietnam, Vietnam J. Earth Sci., 39(1), 14-26.Dao Thai Bac, 2012. Characteristics and distribution law of lead-zinc metallogenic fomations in Viet Bac region. Doctoral thesis.Heyl A.V., Bozion C.N., 1962. Oxidized zinc deposits of the United States, Part 1. General Geology: U.S. Geological Survey Bulletin 1135-A.Hoa T.T., et al., 2010. By-products in lead-zinc and copper ores of Northeast Vietnam. J. Sci. of the Earth,  289-298 (in Vietnamese).Hoang Minh Thao, Tran Thi Hien, Dao Duy Anh, Pham Thi Nga, 2017. Mineralogical characteristics of graphite ore from Bao Ha deposit, Lao Cai Province and proposing a wise use. Vietnam J. Earth Sci., 39(4), 324-336.Jurjovec J., et al., 2002. Acid neutralization mechanisms and metal release in mine tailings: A laboratory column experiment: Geochimica et Cosmochimica Acta, 66, 1511-1523.Large D., 2001. The geology of non-sulphide zinc Deposits - an Overview: Erzmetall, 54(5), 264-276.Maria Boni, 2003. Nonsulfide Zinc Deposits: a new - (old) type of economic  mineralization. Society for geology applied to mineral deposits (SGA) News, Number 15. https://www.e-sga.org/fileadmin/sga/newsletter/news15/art01.html.McPhail D.C., et al., 2003, The geochemistry and mobility of zinc in the regolith: in Roach, I.C., ed., Advances in Regolith, 287-291.Murray W. Hitzman, et al., 2003. Classification, genesis, and exploration guides for non-sulfide zinc deposits: Economic Geology, 98(4), 685-714.Nguyen V.P., 2013. Wet tropical wethering in Viet Nam. Natural Science and Technology Publisher.Nicola Mondillo, 2013. Supergene Nonsulfide Zinc-Lead Deposits: The Examples of Jabali (Yemen) and Yanque (Peru). Doctoral thesis.Nordstrom D.K., Alpers C.N., 1999. Geochemistry of acid mine waste. Review in Economic Geology, the environmental geochemistry of ore deposits/Eds. G.S.Plumlee, M.J. Logsdon. Part A: Processes, techniques, and health issues, 6A, 133-160.Reynolds N.A., et al., 2003. The Padaeng Supergene Nonsulfide Zinc Deposit, Mae Sod, Thailand. Economic Geology, 98(4), 773-785.Sangameshwar S.R., Barnes H.L., 1983. Supergene Processes in Zinc-Lead-Silver Sulfide Ores in Carbonates: Economic Geology, 78, 1379-1397.Stumm W., Morgan J.J., 1996. Aquatic Chemistry, Third Edition. John Wiley Sons, New York, NY.Takahashi T., 1960. Supergene alteration of zinc and lead deposits in limestone: Economic Geology, 55, 1083-1115.Thornber M.R. and Taylor G.F., 1992. The mechanisms of sulphide oxidation and gossan formation, in: Butt, C.R.M., and Zeegers H., (Eds.)., Regolith exploration geochemistry in tropical and subtropical terrains, in Govett G.J.S., ed., Handbook of exploration geochemistry: Amsterdam, Elsevier, 4, 119-138.Tran Trong Hoa, 2005. Potential assessment of By- products in lead-zinc and copper deposits of   Northeast Vietnam. Final report.Tran Tuan Anh, 2010. Studying accompanying component in the types of potential deposits of basic metals and precious - rare metals of north Viet Nam to improve the efficiency of mining and environmental protection. Final report. KC.08.24/06-10.Tran Tuan Anh, et al., 2011. Mineralogical and geochemical characteristics and forming conditions of lead - zinc deposits  in Lo Gam structure, northern Vietnam. J. Sci. of the Earth, 33(3DB), 393-408 ( in Vietnamese).Vito Coppola et al., 2009. Nonsulfide zinc deposits in the Silesia - Cracow district, Southern Poland. Springer Link, 44, 559-580.Vito Coppola, et al., 2007. Non-sulfide zinc deposits in Upper Silesia, Southern Poland. Proceeding of the Ninth Biennial SGA Meeting, Dublin, 1401-1404.Williams P.A., 1990. Oxide zone geochemistry: Ellis Horwood Ltd., Chichester, UK, 286p. 

    Occurrence of supergene nickel ores in the Ha Tri Massive, Hoa An District, Cao Bang Province

    Get PDF
    Nickel (Ni) laterites are regolith materials derived from ultramafic rocks and play an important role in the world's Ni production. Ni-laterite deposits are the supergene enrichment of Ni formed from the intense chemical and mechanical weathering of ultramafic parental rocks. In Vietnam, the weathering profile containing Ni laterite was first discovered in the Ha Tri massive (Cao Bang). This profile develops on the Ha Tri serpentinized peridotite rocks classified to the Cao Bang mafic-ultramafic complex (North Vietnam) and exhibits thick weathered zone (10 - 15m). This work carried out a detailed study of the weathering profile at the center of Ha Tri massive. Samples from different horizons of the profile were collected and analyzed in detail by XRF, XRD and SEM-EDX methods to establish the relationship between the Ni-rich supergene products and the parental peridotites (lherzolite) rocks in Ha Tri massive. The results show that the saprolite horizon is most Ni-rich in the weathering profile in Ha Tri. In this horizon, Ni-silicate minerals of garnierite group such as pimelite, nepouite and other Mg-Ni silicates have been found. The appearance of minerals of garnierite group is due to the exchange of Mg by Ni during weathering of peridotite minerals, especially olivine, which leads to the enrichment of the supergene Ni. The occurrence of Ni silicates suggests the existence of the supergene Ni ore in the weathering profile of the Ha Tri massive.References Bosio N.J., Hurst J.V., Smith R.L., 1975. Nickelliferousnontronite, a 15 Å garnierite, at Niquelandia, Goias Brazil. Clays Clay Miner., 23, 400-403. Brand N.W., Butt C.R.M., Elias M., 1998. Nickel Laterites: Classification and features. AGSO Journal of Australian Geology Geophysics, 17(4), 81-88. Bricker O.P., Nesbitt H.W. and Gunter W.D., 1973. The stability of talc. American Mineralogist, 58, 64-72. Brindley G.W. and Hang P.T., 1973. The nature of garnierites. Structures, chemical composition and color characteristics. Clay and Clay Minerals, 21, 27-40. Brindley G.W. and Maksimovic Z., 1974. The nature and nomenclature of hydrous nickel-containing silicates. Clay Minerals, 10, 271-277. Brindley G.W. and Wan H.M., 1975. Composition structures and thermal behavior of nickel containing minerals in thelizardite-ne´pouite series. American Mineralogist, 60, 863-871. Brindley G.W., Bish D.L. and Wan H.M., 1979. Compositions, structures and properties of nickel containing minerals in the kerolite-pimelite series. American Mineralogist, 64, 615-625. Cluzel D. and Vigier B., 2008. Syntectonic mobility of supergene nickel ores from New Caledonia (Southwest Pacific). Evidence from faulted regolith and garnierite veins. Resource Geology, 58, 161-170. Colin F., Nahon D., Trescases J.J., Melfi A.J., 1990. Lateritic weathering of pyroxenites at Niquelandia, Goais, Brazil: The supergene behavior ofnickel: Economic Geology, 85, 1010-1023. Das S.K., Sahoo R.K., Muralidhar J., Nayak B.K., 1999. Mineralogy and geochemistry of profilesthrough lateritic nickel deposits at Kansa,Sukinda, Orissa. Joural of Geoogical. SocietyIndia, 53, 649-668. Decarreau A., Colin F., Herbillon A., Manceau A., Nahon D., Paquet H., Trauth-Badaud D.,Trescases J.J., 1987. Domain segregation in NiFe-Mg-Smectites. Clay Minerals, 35, 1-10. Freyssinet P., Butt C.R.M. and Morris R.C., 2005. Oreforming processes related to lateritic weathering. Economic Geology, 100th aniversary volume, 681-722.Garnier J., Quantin C., Martins E.S., Becquer T., 2006. Solid speciation and availability of chromium in ultramafic soils from Niquelandia, Brazil. Journal of Geochemical Exploration, 88, 206-209. Garnier J., Quantin C., Guimarães E., Becquer T., 2008. Can chromite weathering be a source of Cr in soils? Mineralogy Magazine, 72, 49-53. Gleeson S.A., Butt C.R. and Elias M., 2003. Nickel laterites: A review. SEG Newsletter, 54, 11-18. Gleeson S.A., Butt C.R., Wlias M., 2003. Nickellaterites: a review. SEG Newsletter, Society of Economic Geology, 54. Available from www.segweb.org. Golightly J.P., 1981. Nickeliferous laterite deposits. Economic Geology, 75th Anniversary volume, 710-735. Golightly J.P., 2010. Progress in understanding the evolution of nickel laterite. Society of Economic Geology, In Special Publication, 15, 451-485. Manceau A. and Calas G., 1985. Heterogeneous distribution of nickel in hydrous silicates from New Caledonia ore deposits. American Mineralogist, 70, 549-558. Nguyen Van Pho, 2013. Tropic weathering in Vietnam (in Vietnamese). Pubisher Science and Technology, 365p.Ngo Xuan Thanh, Tran Thanh Hai, Nguyen Hoang, Vu Quang Lan, S. Kwon, Tetsumaru Itaya, M. Santosh, 2014. Backarc mafic-ultramafic magmatism in Northeastern Vietnam and its regional tectonic significance. Journal of Asian Earth Sciences, 90, 45-60.Pelletier B., 1983. Localisation du nickel dans les minerais ‘‘garnieritiques’’ de Nouvelle-Caledonie. Sciences Ge´ologique: Me´moires, 73, 173-183.Pelletier B., 1996. Serpentines in nickel silicate ores from New Caledonia. In Grimsey E.J., and Neuss I. (eds): Nickel ’96, Australasian Institute of Miningand Metallurgy, Melbourne, Publication Series 6(9), 197-205. Proenza J.A., Lewis J.F., Galı´ S., Tauler E., Labrador M., Melgarejo J.C., Longo F. and Bloise G., 2008. Garnierite mineralization from Falcondo Ni-laterite deposit (Dominican Republic). Macla, 9, 197-198. Soler J.M., Cama J., Galı´ S., Mele´ndez W., Ramı´rez, A., andEstanga, J., 2008. Composition and dissolution kinetics ofgarnierite from the Loma de Hierro Ni-laterite deposit,Venezuela. Chemical Geology, 249, 191-202. Springer G., 1974. Compositional and structural variations ingarnierites. The Canadian Mineralogist, 12, 381-388. Springer G., 1976. Falcondoite, nickel analogue of sepiolite. The Canadian Mineralogist, 14, 407-409.Svetlitskaya T.V., Tolstykh N.D., Izokh A.E., Phuong Ngo Thi, 2015. PGE geochemical constraints on the origin of the Ni-Cu-PGE sulfide mineralization in the Suoi Cun intrusion, Cao Bang province,  Northeastern Vietnam. Miner Petrol, 109, 161-180.Tran Trong Hoa, Izokh A.E., Polyakov G.V., Borisenko A.S., Tran Tuan Anh, Balykin P.A., Ngo Thi Phuong, Rudnev S.N., Vu Van Van, Bui An Nien, 2008. Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan plume. Russ. Geol. Geophys., 49, 480-491.Trescases J.J., 1975. L'évolution supergene des roches ultrabasiques en zone tropicale: Formation de gisements nikelifères de Nouvelle Caledonie. Editions ORSTOM, Paris, 259p.Tri T.V., Khuc V. (eds), 2011. Geology and Earth Resources of Vietnam. Publishing House for Science and Technology, 645p (in English). Villanova-de-Benavent C., Proenza J.A., GalíS., Tauler E., Lewis J.F. and Longo F., 2011. Talc- and serpentine-like ‘‘garnierites’’ in the Falcondo Ni-laterite deposit, Dominican Republic. ‘Let’s talk ore deposits’, 11th Biennial Meeting SGA 2011, Antofagasta, Chile, 3p.Wells M.A., 2003. Goronickel laterite deposit. New Caledonia. CRC LEME, p.3

    Study on active tectonic faults using soil radon gas method in Viet Nam

    Get PDF
    This paper presents the results of soil radon gas measurement in three areas, including Thac Ba and Song Tranh 2 hydropower plants, and the planned locations of the nuclear power plants Ninh Thuan 12 using solid-state nuclear track detectors (SSNTD) with the aim of clarifying the activity of tectonic faults in these areas. The activity of tectonic faults was assessed through radon activity index KRn (the ratio between anomaly and threshold), which was divided into 5 levels as follows ultra-high (KRn 10), high (10≥KRn 5), high (5≥KRn 3), medium (3≥KRn 2) and low (KRn≤2). Soil radon gas measurement results showed that in the radon gas concentrations in the Thac Ba hydropower plant area ranged from 72 Bq/m3 to 273.133 Bq/m3 and maximum radon activity index KRn reached 9.75 (high level). High KRn indexes show Chay River fault active in recent time and the sub-meridian distribution of Rn anomalies suggested a right-slip motion of the fault. Rn concentrations in the Ninh Thuan 12 areas ranged from 6 Bq/m3 to 52.627 Bq/m3, however, the KRn indexes were mostly low (KRn≤3) and the highest value was only 3.42, suggesting that expression of activity of the tectonic faults in this region is not clear, even no expression of fault activity. In the Song Tranh 2 hydropower plant and adjacent areas, radon concentrations ranged from 29 Bq/m3 to 77.729 Bq/m3 and maximum KRn index was 20.16 (ultra-high level). The faults having clearer activity expression are Hung Nhuong - Ta Vy, Song Tra Bong and some high order faults, especially the northwest - southeast segments of these faults or their intersections with the northwest - southeast faults. In addition, the high values KRn in the mentioned intersections can be evidenced for the activeness of northwest - southeast faults at the present time. The studies on active faults using soil radon gas method were performed in areas with very different geological and structural features, but the results are well consistent with the results of previous investigations obtained by other methods. It confirmed the effectiveness and capability of soil radon gas geochemistry applying to study active tectonic faults.ReferencesAl-Hilal M., Al-Ali A., 2010. The role of soil gas radon survey in exploring unknown subsurface faults at Afamia B dam, Syria. Radiat. Meas, 45, 219-224.Amponsah,   P.,   Banoeng-Yakubo,   B.,   Andam,   A., Asiedu, D.,  2008. Soil  radon  concentration along fault systems in parts of south eastern Ghana. J. Afr. Earth Sci. 51, 39-48.Asumadu-Sakyi A.B., Fletcher J.J., Oppon O.C., Qua- shie F.K., Wordson D.A., Adjei C.A., Amartey E.O., Darko E.O. and Amponsah P.,  2011. Preliminary Studies on Geological Fault Location Using Solid State Nuclear Track Detection. Research Journal of Environmental and Earth Sciences, 3(1), 24-31.Baubron, J.-C., Rigo, A., Toutain, J.-P., 2002. Soil gas profiles as a tool to characterize active tectonic are- as: the Jaut Pass example (Pyrenees, France). Earth Planet. Sci. Lett, 196, 69-81.Burton, M., Neri, M., Condarelli, D., 2004. High spatial resolution radon measurements reveal hidden active faults on Mt. Etna. Geophys. Res. Lett, 31, L07618.Ciotoli,  G.,  Etiope,  G.,  Guerra,  M.    Lombardi, S., 1999. The detection of concealed faults in the Ofan- to basin using the correlation between soil gas fracture surveys.   Tectonophysics,  299(3-4), 321-332.Ciotoli, G., Lombardi, S. Annunziatellis, A., 2007. Geostatistical analysis of soil gas data in a high seismic intermontane basin:     Fucino     Plain, central Italy. J. Geophys. Res., 112, B05407, doi:10.1029/2005JB004044.Font, L., Baixeras, C., Moreno, V., Bach, J., 2008. Soil radon levels across the Amer fault. Radiat. Meas, 43, 319-323.Geological and Mineral Resources Map of Viet Nam on 1:200,000, 2005. Published by Department of Geology and Minerals of Viet Nam, Ha Noi, Lists: Yen Bai (F-48-XXI), Tuyen Quang (F-48-XXII), Quang Ngai (D-49-VIIVIII), Hoi An (D-49-I), Da Lat - Cam Ranh (C-49-III).Ghosh D., Deb A. and Sengupta R., 2009. Anomalous radon emission as precursor of earthquake. J. Appl. Geophys., 69, 67-81.González-Díez, A., Soto, J., Gómez-Arozamena, J., Bonachea, J., Martínez-Díaz, J.J., Cuesta, J.A.,Olague, I., Remondo, J., Fernández Maroto, G., Díaz de Terán, J.R., 2009. Identification of latent faults  using  a  radon  test.  Geomorphology,  110,11‐19.Haerudin N, Wahyudi, Munadi S., Suryanto W., 2013. A Soil Gas Radon Survey to Determine Fault at Southern Part of  Rajabasa Geothermal Field, Lampung Indonesia. International Journal of Engineering Technology IJET-IJENS, 13(1), 75-81.Hauksson E., 1981. Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis. J. Geophys. Res., 86, 9397-9410.Ioannides, K., Papachristodoulou, C., Stamoulis, K., Ka- ramanis, D., Pavlides, S., Chatzipetros, A., Karakala, E., 2003. Soil gas radon: a tool for exploring active fault zones. Appl. Radiat. Isot, 59, 205-213.Israel H. and Bjornsson S., 1967. Radon (Rn-222) and thoron (Rn-220) in soil air over faults. Z. Geophys, 33, 48-64.Kemski, J., Siehl, A., Stegemann, R., Valdivia- Manchego, M., 2001. Mapping the geogenic radon potential in Germany.  Sci.  Total  Environ,  272, 217-230.King  C.Y.,  1978.  Radon emanation on  San  Andreas fault. Nature, 271, 516-519.King, C.Y., King, B.S., Evans, W.C., 1996. Spatial radon anomalies on active faults in California. Appl. Geochem, 11, 497-510.Laskar I., Phukon P., Goswami A.K., Chetry G. and Roy U.C.,   2011.   A possible link between radon anomaly and earthquake. Geochemical Journal, 45, 439-446.Lombardi, S., Voltattorni, N., 2010. Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults. Appl. Geochem, 25, 1206-1220.Moussa M.M., Arabi A-G. M. E., 2003. Soil radon survey for tracing active fault: a case study along Qena- Safaga road, East Desert, Egypt. Radiat. Meas, 37,211-216.Papastefanou C., 2010. Variation of radon flux along active fault zones in association with earthquake occurrence. Radiat. Meas, 45, 943-951.Nguyen Dang Tuc, 2000. Kinematic characteristics of the Red River - Chay River fault zone in Cenozoic.  Journal of  Sciences of the Earth,  22, 174-180 (in Vietnamese).Nguyen Van Pho, Nguyen Trong Yem, 1996. Gas geochemical approach in study of the activity of Red River fault system.  Journal of Geology,  Ha  Noi, series A, 236, 9-10.Nguyen Van Pho, Hoang Tuyet Nga, 1996. Some results of the micro geodynamic maping in Thac Ba area by using of nuclear track detector method. In Geology - Resources, Sci. and Tech. Publishing house, Ha Noi, , 187-191.Nguyen Van Pho, Hoang Thi Tuyet Nga, Doan Thi Thu Tra, 1999. Study on the stability of Thac Ba hy- drpopower dam by using nuclear track detector method. Journal of Geology, Ha Noi, Series B, 13-14, 270-271.Nguyen Van Pho, Hoang Thi Tuyet Nga, Nguyen Trung Minh, Doan Thi Thu Tra, Vu Manh Long, Le Thanh Chung,  Nguyen  Dinh  Xuyen,  Pham  An  Cuong, 2004. Results of radon continuous measurements in soil gas at the North-Western area. Journal of  Sciences of the Earth, 26, 653-656 ( in Vietnamese).Nguyen Trong Yem, 1996. Regimes of tectonic stress field during Cenozoi in Vietnam. Journal of Geology, Ha Noi, series A, 236, 1-6.Reimann C., Filzmoser P., Garrett R.G., 2005. Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346, 1-3, 1-16.Richon P., Klinger Y., Tapponnier P., Li C.X., Van Der Woerd J., Perrier F., 2010. Measuring radon flux across active faults: Relevance of excavating and possibility of satellite. Radiation Measurements, 45, 211-218.Riggio A., and Santulin M., 2015. Earthquake forecasting: a review of radon as seismic precursor. Bollettino di Geofisica Teorica ed Applicata, 56(2), 95-114.Seminsky K.Zh., Demberel S., 2013. The first estimations of soil-radon activity near faults in Central  Mongolia.  Radiation  Measurements,  49, 19-34.Swakón, J., Kozak, K., Paszkowski, M., Gradzinski, R., Loskiewicz,  J.,  Mazur,  J.,  Janik,  M.,  Bogacz,  J.,Horwacik, T., Olko, P., 2004. Radon concentration in soil gas around local disjunctive tectonic zones in the Krakow area. J. Environ. Radioact, 78, 137-149.Tanner, A.B., 1980. Radon migration in the ground: A supplementary review, in Gesell, T.F., and Lowder, W.M., eds., Natural Radiation Environment III: U.S. Dept. Energy Rept. CONF-780422, 1, 5-56.Toutain J.P., Baubron J.C., 1999. Gas geochemistry and seismotectonics:  a   review.   Tectonophysics  304, 1-27.Tran Trong Hue, 1996. First results of research present geodynamics by soil gas radon method. In Geology - Resource, Ha Noi, 1, 179-185.Tran Trong Hue, 1999. Characteristics of radon radioactive gas in Song Ma fault zone. Journal of Sciences of the Earth, 123-128.Tung S., Leung J. K. C., Jiao J. J., Wiegand J., Wartenberg W., 2013. Assessment of soil radon potential in Hong Kong, China, using a 10-point evaluation system.   Environmental   Earth   Sciences,   68(3), 679-689.Tran Van Duong, Tran Trong Hue, 1996. Some results of the investigation active faults in the South Central Viet  Nam by radon method.  Journal of  Science of the Earth, 18, 276-288.Tran Van Tri, Vu Khuc et al., 2009. Geology and earth resources of Viet Nam. Publishing House for Science and Technology, Ha Noi, 645.Utkin V.I., Yurkov A.K., 2010. Radon as a tracer of tectonic movements. Russian Geology and Geophysics, 51, 220-227.Wakita H., Nakamura Y., Notsu K., Noguchi M. and Asada T., 1980. Radon anomaly: a possible precursor of the 1978 Izu-Oshimakinkai earthquake. Sci., 207, 882-883.Walia V., Mahajan S., Kumar A., Singh S., Singh Bajwa B., Dhar S., Yang T.F., 2008. Fault delineation study using soil gas method in the Dharamsala area, NW Himalayas, India . Radiat. Meas, 43, 337-342.Wang X., Li Y., Du J., Zhou X., 2014. Correlations be- tween radon in soil gas and the activity of seismo- genic faults in the Tangshan area, North China. Ra- diation Measurements, 60, 8-14
    corecore