16 research outputs found

    Kinetic analysis of the role of the tyrosine 13, phenylalanine 56 and glutamine 54 network in the U1A/U1 hairpin II interaction

    Get PDF
    The A protein of the U1 small nuclear ribonucleoprotein particle, interacting with its stem–loop RNA target (U1hpII), is frequently used as a paradigm for RNA binding by recognition motif domains (RRMs). U1A/U1hpII complex formation has been proposed to consist of at least two steps: electrostatically mediated alignment of both molecules followed by locking into place, based on the establishment of close-range interactions. The sequence of events between alignment and locking remains obscure. Here we examine the roles of three critical residues, Tyr13, Phe56 and Gln54, in complex formation and stability using Biacore. Our mutational and kinetic data suggest that Tyr13 plays a more important role than Phe56 in complex formation. Mutational analysis of Gln54, combined with molecular dynamics studies, points to Arg52 as another key residue in association. Based on our data and previous structural and modeling studies, we propose that electrostatic alignment of the molecules is followed by hydrogen bond formation between the RNA and Arg52, and the sequential establishment of interactions with loop bases (including Tyr13). A quadruple stack, sandwiching two bases between Phe56 and Asp92, would occur last and coincide with the rearrangement of a C-terminal helix that partially occludes the RRM surface in the free protein

    The role of positively charged amino acids and electrostatic interactions in the complex of U1A protein and U1 hairpin II RNA

    Get PDF
    Previous kinetic investigations of the N-terminal RNA recognition motif (RRM) domain of spliceosomal protein U1A, interacting with its RNA target U1 hairpin II, provided experimental evidence for a ‘lure and lock’ model of binding in which electrostatic interactions first guide the RNA to the protein, and close range interactions then lock the two molecules together. To further investigate the ‘lure’ step, here we examined the electrostatic roles of two sets of positively charged amino acids in U1A that do not make hydrogen bonds to the RNA: Lys20, Lys22 and Lys23 close to the RNA-binding site, and Arg7, Lys60 and Arg70, located on ‘top’ of the RRM domain, away from the RNA. Surface plasmon resonance-based kinetic studies, supplemented with salt dependence experiments and molecular dynamics simulation, indicate that Lys20 predominantly plays a role in association, while nearby residues Lys22 and Lys23 appear to be at least as important for complex stability. In contrast, kinetic analyses of residues away from the RNA indicate that they have a minimal effect on association and stability. Thus, well-positioned positively charged residues can be important for both initial complex formation and complex maintenance, illustrating the multiple roles of electrostatic interactions in protein–RNA complexes

    Splice form dependence of β-neurexin/neuroligin binding interactions

    Get PDF
    Alternatively spliced β-neurexins (β-NRXs) and neuroligins (NLs) are thought to have distinct extracellular binding affinities, potentially providing a β-NRX/NL synaptic recognition code. We utilized surface plasmon resonance to measure binding affinities between all combinations of alternatively spliced β-NRX 1-3 and NL 1-3 ectodomains. Binding was observed for all β-NRX/NL pairs. The presence of the NL1 B splice insertion lowers β-NRX binding affinity by ∼2-fold, while β-NRX splice insertion 4 has small effects that do not synergize with NL splicing. New structures of glycosylated β-NRXs 1 and 2 containing splice insertion 4 reveal that the insertion forms a new β strand that replaces the β10 strand, leaving the NL binding site intact. This helps to explain the limited effect of splice insert 4 on NRX/NL binding affinities. These results provide new structural insights and quantitative binding information to help determine whether and how splice isoform choice plays a role in β-NRX/NL-mediated synaptic recognition

    Crystal structures of β-neurexin 1 and β-neurexin 2 ectodomains and dynamics of splice insertion sequence 4

    Get PDF
    Presynaptic neurexins (NRXs) bind to postsynaptic neuroligins (NLs) to form Ca2+-dependent complexes that bridge neural synapses. β-NRXs bind NLs through their LNS domains, which contain a single site of alternative splicing (splice site 4) giving rise to two isoforms: +4 and Δ. We present crystal structures of the Δ isoforms of the LNS domains from β-NRX1 and β-NRX2, crystallized in the presence of Ca2+ ions. The Ca2+-binding site is disordered in the β-NRX2 structure, but the 1.7 Å β-NRX1 structure reveals a single Ca2+ ion, ∼12 Å from the splice insertion site, with one coordinating ligand donated by a glutamic acid from an adjacent β-NRX1 molecule. NMR studies of β-NRX1+4 show that the insertion sequence is unstructured, and remains at least partially disordered in complex with NL. These results raise the possibility that β-NRX insertion sequence 4 may function in roles independent of neuroligin binding

    U1A protein and U1 hairpin II RNA

    No full text
    role of positively charged amino acids and electrostatic interactions in the complex o

    Homophilic and Heterophilic Interactions of Type II Cadherins Identify Specificity Groups Underlying Cell-Adhesive Behavior

    No full text
    Summary: Type II cadherins are cell-cell adhesion proteins critical for tissue patterning and neuronal targeting but whose molecular binding code remains poorly understood. Here, we delineate binding preferences for type II cadherin cell-adhesive regions, revealing extensive heterophilic interactions between specific pairs, in addition to homophilic interactions. Three distinct specificity groups emerge from our analysis with members that share highly similar heterophilic binding patterns and favor binding to one another. Structures of adhesive fragments from each specificity group confirm near-identical dimer topology conserved throughout the family, allowing interface residues whose conservation corresponds to specificity preferences to be identified. We show that targeted mutation of these residues converts binding preferences between specificity groups in biophysical and co-culture assays. Our results provide a detailed understanding of the type II cadherin interaction map and a basis for defining their role in tissue patterning and for the emerging importance of their heterophilic interactions in neural connectivity. : Type II cadherins are a family of vertebrate cell adhesion proteins expressed primarily in the CNS. Brasch et al. measure binding between adhesive fragments, revealing homophilic and extensive selective heterophilic binding with specificities that define groups of similar cadherins. Structures reveal common adhesive dimers, with residues governing cell-adhesive specificity. Keywords: cell adhesion, crystal structure, hemophilic specificity, heterophilic specificity, neural patterning, synaptic targeting, cadheri
    corecore