11,276 research outputs found
Evidence that the 36kb plasmid of Brachyspira hyodysenteriae contributes to virulence
Swine dysentery (SD) results from infection of the porcine large intestine with the anaerobic intestinal spirochaete Brachyspira hyodysenteriae. Recently the genome of virulent Australian B. hyodysenteriae strain WA1 was sequenced, and a 36. kilobase (kb) circular plasmid was identified. The plasmid contained 31 genes including six rfb genes that were predicted to be involved with rhamnose biosynthesis, and others associated with glycosylation. In the current study a set of PCRs was developed to amplify portions of nine of the plasmid genes. When used with DNA extracted from virulent strain B204, PCR products were generated, but no products were generated with DNA from avirulent strain A1. Analysis of the DNA using pulsed field gel electrophoresis (PFGE) identified a plasmid band in strains WA1 and B204, but not in strain A1. These results demonstrate that strain A1 does not contain the plasmid, and suggests that lack of the plasmid may explain why this strain is avirulent. To determine how commonly strains lacking plasmids occur, DNA was extracted from 264 Australian field isolates of B. hyodysenteriae and subjected to PCRs for three of the plasmid genes. Only one isolate (WA400) that lacked the plasmid was identified, and this absence was confirmed by PFGE analysis of DNA from the isolate and further PCR testing. To assess its virulence, 24 pigs were experimentally challenged with cultures of WA400, and 12 control pigs were challenged with virulent strain WA1 under the same conditions. Significantly fewer (P= 0.03) of the pigs challenged with WA400 became colonised and developed SD (13/24; 54%) compared to the pigs infected with WA1 (11/12; 92%). Gross lesions in the pigs colonised with WA400 tended to be less extensive than those in pigs colonised with WA1, although there were no obvious differences at the microscopic level. The results support the likelihood that plasmid-encoded genes of B. hyodysenteriae are involved in colonisation and/or disease expression
Intestinal spirochaetes of the genus Brachyspira share a partially conserved 26 kilobase genomic region with Enterococcus faecalis and Escherichia coli
Anaerobic intestinal spirochaetes of the genus Brachyspira include both pathogenic and commensal species. The two best-studied members are the pathogenic species B. hyodysenteriae (the aetiological agent of swine dysentery) and B. pilosicoli (a cause of intestinal spirochaetosis in humans and other species). Analysis of near-complete genome sequences of these two species identiļ¬ ed a highly conserved 26 kilobase (kb) region that was shared, against a background of otherwise very little sequence conservation between the two species. PCR ampliļ¬cation was used to identify sets of contiguous genes from this region in the related Brachyspira species B. intermedia, B. innocens, B. murdochii, B. alvinipulli, and B. aalborgi, and demonstrated the presence of at least part of this region in species from throughout the genus. Comparative genomic analysis with other sequenced bacterial species revealed that none of the completely sequenced spirochaete species from different genera contained this conserved cluster of coding sequences. In contrast, Enterococcus faecalis and Escherichia coli contained high gene cluster conservation across the 26 kb region, against an expected background of little sequence conservation between these phylogenetically distinct species. The conserved region in B. hyodysenteriae contained ļ¬ve genes predicted to be associated with amino acid transport and metabolism, four with energy production and conversion, two with nucleotide transport and metabolism, one with ion transport and metabolism, and four with poorly characterised or uncertain function, including an ankyrin repeat unit at the 5ā end. The most likely explanation for the presence of this 26 kb region in the Brachyspira species and in two unrelated enteric bacterial species is that the region has been involved in horizontal gene transfer
Experimental Analysis of Algorithms for Coflow Scheduling
Modern data centers face new scheduling challenges in optimizing job-level
performance objectives, where a significant challenge is the scheduling of
highly parallel data flows with a common performance goal (e.g., the shuffle
operations in MapReduce applications). Chowdhury and Stoica introduced the
coflow abstraction to capture these parallel communication patterns, and
Chowdhury et al. proposed effective heuristics to schedule coflows efficiently.
In our previous paper, we considered the strongly NP-hard problem of minimizing
the total weighted completion time of coflows with release dates, and developed
the first polynomial-time scheduling algorithms with O(1)-approximation ratios.
In this paper, we carry out a comprehensive experimental analysis on a
Facebook trace and extensive simulated instances to evaluate the practical
performance of several algorithms for coflow scheduling, including the
approximation algorithms developed in our previous paper. Our experiments
suggest that simple algorithms provide effective approximations of the optimal,
and that the performance of our approximation algorithms is relatively robust,
near optimal, and always among the best compared with the other algorithms, in
both the offline and online settings.Comment: 29 pages, 8 figures, 11 table
Emergence of Brachyspira species and strains: reinforcing the need for surveillance
This short review discusses the increasing complexity that has developed around the understanding of Brachyspira species that infect pigs, and their ability to cause disease. It describes the recognition of new weakly haemolytic Brachyspira species, and the growing appreciation that Brachyspira pilosicoli and some other weakly haemolytic species may be pathogenic in pigs. It discusses swine dysentery (SD) caused by the strongly haemolytic Brachyspira hyodysenteriae, particularly the cyclical nature of the disease whereby it can largely disappear as a clinical problem from a farm or region, and re-emerge years later. The review then describes the recent emergence of two newly described strongly haemolytic pathogenic species, āBrachyspira suanatinaā and āBrachyspira hampsoniiā both of which appear to have reservoirs in migratory waterbirds, and which may be transmitted to and between pigs. āB. suanatinaā seems to be confined to Scandinavia, whereas āB. hampsoniiā has been reported in North America and Europe, causes a disease indistinguishable from SD, and has required the development of new routine diagnostic tests. Besides the emergence of new species, strains of known Brachyspira species have emerged that vary in important biological properties, including antimicrobial susceptibility and virulence. Strains can be tracked locally and at the national and international levels by identifying them using multilocus sequence typing (MLST) and comparing them against sequence data for strains in the PubMLST databases. Using MLST in conjunction with data on antimicrobial susceptibility can form the basis for surveillance programs to track the movement of resistant clones. In addition some strains of B. hyodysenteriae have low virulence potential, and some of these have been found to lack the B. hyodysenteriae 36 kB plasmid or certain genes on the plasmid whose activity may be associated with colonization. Lack of the plasmid or the genes can be identified using PCR testing, and this information can be added to the MLST and resistance data to undertake detailed surveillance. Strains of low virulence are particularly important where they occur in high health status breeding herds without causing obvious disease: potentially they could be transmitted to production herds where they may colonize more effectively and cause disease under stressful commercial conditions
- ā¦