1,692 research outputs found

    Flavin-containing monooxygenases: mutations, disease and drug response

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Trends in Pharmacological Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Trends in Pharmacological Sciences, [VOL 29, ISSUE 6, (2008)] DOI: 10.1016/j.tips.2008.03.00

    Drug metabolism by flavin-containing monooxygenases of human and mouse

    Get PDF
    Introduction: Flavin-containing monooxygenases (FMOs) play an important role in drug metabolism. / Areas covered: We focus on the role of FMOs in the metabolism of drugs in human and mouse. We describe FMO genes and proteins of human and mouse; the catalytic mechanism of FMOs and their significance for drug metabolism; differences between FMOs and CYPs; factors contributing to potential underestimation of the contribution of FMOs to drug metabolism; the developmental and tissue-specific expression of FMO genes and differences between human and mouse; and factors that induce or inhibit FMOs. We discuss the contribution of FMOs of human and mouse to the metabolism of drugs and how genetic variation of FMOs affects drug metabolism. Finally, we discuss the utility of animal models for FMO-mediated drug metabolism in humans. / Expert opinion: The contribution of FMOs to drug metabolism may be underestimated. As FMOs are not readily induced or inhibited and their reactions are generally detoxifications, the design of drugs that are metabolized predominantly by FMOs offers clinical advantages. Fmo1(-/-),Fmo2(-/-),Fmo4(-/-) mice provide a good animal model for FMO-mediated drug metabolism in humans. Identification of roles for FMO1 and FMO5 in endogenous metabolism has implications for drug therapy and initiates an exciting area of research

    Trimethylaminuria

    Get PDF
    Viewed on: 14.6.2011Viewed on: 14.6.2011Viewed on: 14.6.201

    Flavin-containing monooxygenases: new structures from old proteins

    Get PDF
    A study reports the structures of membrane-bound flavin-containing monooxygenases (FMOs), solved using reconstructed ancestral mammalian FMOs. The models provide a structural basis for these enzymes’ mechanism of action and show how the proteins interact with membranes and how substrates access their active sites

    Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease

    Get PDF
    Flavin-containing monooxygenase 3 (FMO3) is known primarily as an enzyme involved in the metabolism of therapeutic drugs. However, on a daily basis we are exposed to one of the most abundant substrates of the enzyme, trimethylamine, which is released from various dietary components by the action of gut bacteria. FMO3 converts the odorous trimethylamine to non-odorous trimethylamine N-oxide, which is excreted in urine. Impaired FMO3 activity gives rise to the inherited disorder primary trimethylaminuria. Affected individuals cannot produce trimethylamine N-oxide and, consequently, excrete large amounts of trimethylamine. A dysbiosis in gut bacteria can give rise to secondary trimethylaminuria. Recently, there has been much interest in FMO3 and its catalytic product trimethylamine N-oxide. This is because trimethylamine N-oxide has been implicated in various conditions affecting health, including cardiovascular disease, reverse cholesterol transport and glucose and lipid homeostasis. In this review, we consider the dietary components that can give rise to trimethylamine, the gut bacteria involved in the production of trimethylamine from dietary precursors, the metabolic reactions by which bacteria produce and utilize trimethylamine and the enzymes that catalyze the reactions. Also included is information on bacteria that produce trimethylamine in the oral cavity and vagina, two key microbiome niches that can influence health. Finally, we discuss the importance of the trimethylamine/trimethylamine N-oxide microbiome-host axis in health and disease, considering factors that affect bacterial production and host metabolism of trimethylamine, the involvement of trimethylamine N-oxide and FMO3 in disease and the implications of the host-microbiome axis for management of trimethylaminuria

    A highly sensitive liquid chromatography electrospray ionization mass spectrometry method for quantification of TMA, TMAO and creatinine in mouse urine

    Get PDF
    Our method describes the quantification in mouse urine of trimethylamine (TMA), trimethylamine N-oxide (TMAO) and creatinine. The method combines derivatization of TMA, with ethyl bromoacetate, and LC chromatographic separation on an ACE C18 column. The effluent was continuously electrosprayed into the linear ion trap mass spectrometer (LTQ), which operated in selective ion monitoring (SIM) modes set for targeted analytes and their internal standards (IS). All validation parameters were within acceptable ranges of analytical method validation guidelines. Intra- and inter-day assay precision and accuracy coefficients of variation were <3.1%, and recoveries for TMA and TMAO were 97–104%. The method developed uses a two-step procedure. Firstly, TMA and TMAO are analyzed without a purification step using a 5-min gradient cap-LC- SIMs analysis, then creatinine is analyzed using the same experimental conditions. The method is robust, highly sensitive, reproducible and has the high-throughput capability of detecting TMA, TMAO and creatinine at on-column concentrations as low as 28 pg/mL, 115 pg/mL and 1 ng/mL, respectively. The method is suitable for analysis of TMA, TMAO and creatinine in both male and female mouse urine. / The key benefits of the method are: The small sample volume of urine required, which overcomes the difficulties of collecting sufficient volumes of urine at defined times. / No sample pre-treatment is necessary. / The quantification of TMA, TMAO and creatinine using the same cap-LC-MS method

    Molecular footprints of the Holocene retreat of dwarf birch in Britain

    Get PDF
    © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    Flavin-Containing Monooxygenase 1 Catalyzes the Production of Taurine from Hypotaurine

    Get PDF
    Taurine is one of the most abundant amino acids in mammalian tissues. It is obtained from the diet and by de novo synthesis, from cysteic acid or hypotaurine. Despite the discovery in 1954 that the oxygenation of hypotaurine produces taurine, the identification of an enzyme catalyzing this reaction has remained elusive. In large part this is due to the incorrect assignment, in 1962, of the enzyme as an NAD-dependent hypotaurine dehydrogenase. For more than 55 years the literature has continued to refer to this enzyme as such. Here we show, both in vivo and in vitro, that the enzyme that oxygenates hypotaurine to produce taurine is flavin-containing monooxygenase 1 (FMO1). Metabolite analysis of the urine of Fmo1-null mice by 1H NMR spectroscopy revealed a build-up of hypotaurine and a deficit of taurine in comparison with the concentrations of these compounds in the urine of wild-type mice. In vitro assays confirmed that human FMO1 catalyzes the conversion of hypotaurine to taurine utilizing either NADPH or NADH as co-factor. FMO1 has a wide substrate range and is best known as a xenobiotic- or drug-metabolizing enzyme. The identification that the endogenous molecule hypotaurine is a substrate for the FMO1-catalyzed production of taurine resolves a long-standing mystery. This finding should help establish the role FMO1 plays in a range of biological processes in which taurine or its deficiency is implicated, including conjugation of bile acids, neurotransmitter, anti-oxidant and anti-inflammatory functions, and the pathogenesis of obesity and skeletal muscle disorders

    Identification of flavin-containing monooxygenase 5 (FMO5) as a regulator of glucose homeostasis and a potential sensor of gut bacteria

    Get PDF
    We have previously identified flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic aging. The aim of the present study was to investigate the role of FMO5 in glucose homeostasis and the impact of diet and gut flora on the phenotype of mice in which the Fmo5 gene has been disrupted (Fmo5−/− mice). In comparison with wild-type (WT) counterparts, Fmo5−/− mice are resistant to age-related changes in glucose homeostasis and maintain the higher glucose tolerance and insulin sensitivity characteristic of young animals. When fed a high-fat diet, they are protected against weight gain and reduction of insulin sensitivity. The phenotype of Fmo5−/− mice is independent of diet and the gut microbiome and is determined solely by the host genotype. Fmo5−/− mice have metabolic characteristics similar to those of germ-free mice, indicating that FMO5 plays a role in sensing or responding to gut bacteria. In WT mice, FMO5 is present in the mucosal epithelium of the gastrointestinal tract where it is induced in response to a high-fat diet. In comparison with WT mice, Fmo5−/− mice have fewer colonic goblet cells, and they differ in the production of the colonic hormone resistin-like molecule β. Fmo5−/− mice have lower concentrations of tumor necrosis factor α in plasma and of complement component 3 in epididymal white adipose tissue, indicative of improved inflammatory tone. Our results implicate FMO5 as a regulator of body weight and of glucose disposal and insulin sensitivity and, thus, identify FMO5 as a potential novel therapeutic target for obesity and insulin resistance
    corecore