29,835 research outputs found

    Universal features of Thermopower in High Tc systems and Quantum Criticality

    Full text link
    In high Tc superconductors a wide ranging connection between the doping dependence of the transition temperature Tc and the room temperature thermopower Q has been observed. A "universal correlation" between these two quantities exists with the thermopower vanishing at optimum doping as noted by OCTHH (Obertelli, Cooper, Tallon, Honma and Hor). In this work we provide an interpretation of this OCTHH universality in terms of a possible underlying quantum critical point (QCP) at Tc. Central to our viewpoint is the recently noted Kelvin formula relating the thermopower to the density derivative of the entropy. Perspective on this formula is gained through a model calculation of the various Kubo formulas in an exactly solved 1-dimensional model with various limiting procedures of wave vector and frequency.Comment: 12 pages, 8 figure

    Minimal weight digit set conversions

    Get PDF
    Copyright © 2004 IEEEWe consider the problem of recoding a number to minimize the number of nonzero digits in its representation, that is, to minimize the weight of the representation. A general sliding window scheme is described that extends minimal binary sliding window conversion to arbitrary radix and to encompass signed digit sets. This new conversion expresses a number of known recoding techniques as special cases. Proof that this scheme achieves minimal weight for a given digit set is provided and results concerning the theoretical average and worst-case weight are derived.Braden Phillips and Neil Burges

    Coplanar Circumbinary Debris Disks

    Full text link
    We present resolved Herschel images of circumbinary debris disks in the alpha CrB (HD139006) and beta Tri (HD13161) systems. We find that both disks are consistent with being aligned with the binary orbital planes. Though secular perturbations from the binary can align the disk, in both cases the alignment time at the distances at which the disk is resolved is greater than the stellar age, so we conclude that the coplanarity was primordial. Neither disk can be modelled as a narrow ring, requiring extended radial distributions. To satisfy both the Herschel and mid-IR images of the alpha CrB disk, we construct a model that extends from 1-300AU, whose radial profile is broadly consistent with a picture where planetesimal collisions are excited by secular perturbations from the binary. However, this model is also consistent with stirring by other mechanisms, such as the formation of Pluto-sized objects. The beta Tri disk model extends from 50-400AU. A model with depleted (rather than empty) inner regions also reproduces the observations and is consistent with binary and other stirring mechanisms. As part of the modelling process, we find that the Herschel PACS beam varies by as much as 10% at 70um and a few % at 100um. The 70um variation can therefore hinder image interpretation, particularly for poorly resolved objects. The number of systems in which circumbinary debris disk orientations have been compared with the binary plane is now four. More systems are needed, but a picture in which disks around very close binaries (alpha CrB, beta Tri, and HD 98800, with periods of a few weeks to a year) are aligned, and disks around wider binaries (99 Her, with a 50 yr period) are misaligned, may be emerging. This picture is qualitatively consistent with the expectation that the protoplanetary disks from which the debris emerged are more likely to be aligned if their binaries have shorter periods.Comment: accepted to MNRA

    Statistical Power, the Bispectrum and the Search for Non-Gaussianity in the CMB Anisotropy

    Full text link
    We use simulated maps of the cosmic microwave background anisotropy to quantify the ability of different statistical tests to discriminate between Gaussian and non-Gaussian models. Despite the central limit theorem on large angular scales, both the genus and extrema correlation are able to discriminate between Gaussian models and a semi-analytic texture model selected as a physically motivated non-Gaussian model. When run on the COBE 4-year CMB maps, both tests prefer the Gaussian model. Although the bispectrum has comparable statistical power when computed on the full sky, once a Galactic cut is imposed on the data the bispectrum loses the ability to discriminate between models. Off-diagonal elements of the bispectrum are comparable to the diagonal elements for the non-Gaussian texture model and must be included to obtain maximum statistical power.Comment: Accepted for publication in ApJ; 20 pages, 6 figures, uses AASTeX v5.

    Antimicrobial susceptibility of recent Australian isolates of Brachyspira hyodysenteriae

    Get PDF
    Swine dysentery (SD) is an important disease in Australia, causing considerable economic loss through reduced growth rates in grower/ finisher pigs and control costs. Swine dysentery is characterized by mucohaemorrhagic colitis, resulting from infection with the anaerobic intestinal spirochaete Brachyspira hyodysenteriae. The diseases can be controlled, but worldwide there is concern about reduced susceptibility of many strains to the commonly available antimicrobials. Furthermore, antimicrobials are being withdrawn due to fears of transmission of resistance to human pathogenic microorganisms, or the presence of potentially toxic residues. The aim of this study was to examine the susceptibility of recent Australian B. hyodysenteriae isolates to commonly available antimicrobial agents

    An atomic clock with 10−1810^{-18} instability

    Full text link
    Atomic clocks have been transformational in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Next-generation optical atomic clocks can extend the capability of these timekeepers, where researchers have long aspired toward measurement precision at 1 part in 1018\bm{10^{18}}. This milestone will enable a second revolution of new timing applications such as relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests on physics beyond the Standard Model. Here, we describe the development and operation of two optical lattice clocks, both utilizing spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of 1.6×10−18\bm{1.6\times 10^{-18}} after only 7\bm{7} hours of averaging

    Constraints On The Topology Of The Universe From The WMAP First-Year Sky Maps

    Full text link
    We compute the covariance expected between the spherical harmonic coefficients aâ„“ma_{\ell m} of the cosmic microwave temperature anisotropy if the universe had a compact topology. For fundamental cell size smaller than the distance to the decoupling surface, off-diagonal components carry more information than the diagonal components (the power spectrum). We use a maximum likelihood analysis to compare the Wilkinson Microwave Anisotropy Probe first-year data to models with a cubic topology. The data are compatible with finite flat topologies with fundamental domain L>1.2L > 1.2 times the distance to the decoupling surface at 95% confidence. The WMAP data show reduced power at the quadrupole and octopole, but do not show the correlations expected for a compact topology and are indistinguishable from infinite models.Comment: 16 pages, 5 figure
    • …
    corecore