424 research outputs found
Mapping the phase diagram of strongly interacting matter
We employ a conformal mapping to explore the thermodynamics of strongly
interacting matter at finite values of the baryon chemical potential .
This method allows us to identify the singularity corresponding to the critical
point of a second-order phase transition at finite , given information
only at . The scheme is potentially useful for computing thermodynamic
properties of strongly interacting hot and dense matter in lattice gauge
theory. The technique is illustrated by an application to a chiral effective
model.Comment: 5 pages, 3 figures; published versio
The Polyakov Loop and its Relation to Static Quark Potentials and Free Energies
It appears well accepted in the literature that the correlator of Polyakov
loops in a finite temperature system decays with the "average" free energy of
the static quark-antiquark system, and can be decomposed into singlet and
adjoint (or octet for QCD) contributions. By fixing a gauge respecting the
transfer matrix, attempts have been made to extract those contributions
separately. In this paper we point out that the "average" and "adjoint"
channels of Polyakov loop correlators are misconceptions. We show analytically
that all channels receive contributions from singlet states only, and give a
corrected definition of the singlet free energy. We verify this finding by
simulations of the 3d SU(2) pure gauge theory in the zero temperature limit,
which allows to cleanly extract the ground state exponents and the non-trivial
matrix elements. The latter account for the difference between the channels
observed in previous simulations.Comment: 14 pages, 3 figures, 1 table; note and reference adde
Non-perturbative Debye mass in finite T QCD
Employing a non-perturbative gauge invariant definition of the Debye
screening mass m_D in the effective field theory approach to finite T QCD, we
use 3d lattice simulations to determine the leading O(g^2) and to estimate the
next-to-leading O(g^3) corrections to m_D in the high temperature region. The
O(g^2) correction is large and modifies qualitatively the standard
power-counting hierarchy picture of correlation lengths in high temperature
QCD.Comment: 4 pages, Late
String Breaking in Four Dimensional Lattice QCD
Virtual quark pair screening leads to breaking of the string between
fundamental representation quarks in QCD. For unquenched four dimensional
lattice QCD, this (so far elusive) phenomenon is studied using the recently
developed truncated determinant algorithm (TDA). The dynamical configurations
were generated on an Athlon 650 MHz PC. Quark eigenmodes up to 420 MeV are
included exactly in these TDA studies performed at low quark mass on large
coarse (but O() improved) lattices. A study of Wilson line correlators in
Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical
configurations reveals evidence for flattening of the string tension at
distances R approximately 1 fm.Comment: 16 pages, 5 figures, Latex (deleted extraneous eps figure file
Heavy Meson Description with a Screened Potential
We perform a quark model calculation of the and spectra
from a screened funnel potential form suggested by unquenched lattice
calculations. A connection between the lattice screening parameter and an
effective gluon mass directly derived from QCD is established. Spin-spin energy
splittings, leptonic widths and radiative decays are also examined providing a
test for the description of the states.Comment: 17 pages, no figures, to appear in Phys. Rev.
String breaking by dynamical fermions in three-dimensional lattice QCD
The first observation is made of hadronic string breaking due to dynamical
fermions in zero temperature lattice QCD. The simulations are done for SU(2)
color in three dimensions, with two flavors of staggered fermions. The results
have clear implications for the large scale simulations that are being done to
search (so far, without success) for string breaking in four-dimensional QCD.
In particular, string breaking is readily observed using only Wilson loops to
excite a static quark-antiquark pair. Improved actions on coarse lattices are
used, providing an extremely efficient means to access the quark separations
and propagation times at which string breaking occurs.Comment: Revised version to appear in Physical Review D, has additional
discussion of the results, additional references, modified title, larger
figure
Quintessential Kination and Cold Dark Matter Abundance
The generation of a kination-dominated phase by a quintessential exponential
model is investigated and the parameters of the model are restricted so that a
number of observational constraints (originating from nucleosynthesis, the
present acceleration of the universe and the dark-energy-density parameter) are
satisfied. The decoupling of a thermal cold dark matter particle during the
period of kination is analyzed, the relic density is calculated both
numerically and semi-analytically and the results are compared with each other.
It is argued that the enhancement, with respect to the standard paradigm, of
the cold dark matter abundance can be expressed as a function of the
quintessential density parameter at the onset of nucleosynthesis. We find that
values of the latter quantity close to its upper bound require the
thermal-averaged cross section times the velocity of the cold relic to be
almost three orders of magnitude larger than this needed in the standard
scenario so as compatibility with the cold dark matter constraint is achieved.Comment: Published versio
A remark on non-Abelian classical kinetic theory
It is known that non-Abelian classical kinetic theory reproduces the Hard
Thermal/Dense Loop (HTL/HDL) effective action of QCD, obtained after
integrating out the hardest momentum scales from the system, as well as the
first higher dimensional operator beyond the HTL/HDL level. We discuss here its
applicability at still higher orders, by comparing the exact classical
effective action obtained in the static limit, with the 1-loop quantum
effective potential. We remark that while correct types of operators arise, the
classical colour algebra reproduces correctly the prefactor of the 4-point
function only for matter in asymptotically high dimensional colour
representations.Comment: 6 page
Protocol for ADDITION-PRO: a longitudinal cohort study of the cardiovascular experience of individuals at high risk for diabetes recruited from Danish primary care.
BACKGROUND: Screening programmes for type 2 diabetes inevitably find more individuals at high risk for diabetes than people with undiagnosed prevalent disease. While well established guidelines for the treatment of diabetes exist, less is known about treatment or prevention strategies for individuals found at high risk following screening. In order to make better use of the opportunities for primary prevention of diabetes and its complications among this high risk group, it is important to quantify diabetes progression rates and to examine the development of early markers of cardiovascular disease and microvascular diabetic complications. We also require a better understanding of the mechanisms that underlie and drive early changes in cardiometabolic physiology. The ADDITION-PRO study was designed to address these issues among individuals at different levels of diabetes risk recruited from Danish primary care. METHODS/DESIGN: ADDITION-PRO is a population-based, longitudinal cohort study of individuals at high risk for diabetes. 16,136 eligible individuals were identified at high risk following participation in a stepwise screening programme in Danish general practice between 2001 and 2006. All individuals with impaired glucose regulation at screening, those who developed diabetes following screening, and a random sub-sample of those at lower levels of diabetes risk were invited to attend a follow-up health assessment in 2009-2011 (n=4,188), of whom 2,082 (50%) attended. The health assessment included detailed measurement of anthropometry, body composition, biochemistry, physical activity and cardiovascular risk factors including aortic stiffness and central blood pressure. All ADDITION-PRO participants are being followed for incident cardiovascular disease and death. DISCUSSION: The ADDITION-PRO study is designed to increase understanding of cardiovascular risk and its underlying mechanisms among individuals at high risk of diabetes. Key features of this study include (i) a carefully characterised cohort at different levels of diabetes risk; (ii) detailed measurement of cardiovascular and metabolic risk factors; (iii) objective measurement of physical activity behaviour; and (iv) long-term follow-up of hard clinical outcomes including mortality and cardiovascular disease. Results will inform policy recommendations concerning cardiovascular risk reduction and treatment among individuals at high risk for diabetes. The detailed phenotyping of this cohort will also allow a number of research questions concerning early changes in cardiometabolic physiology to be addressed.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Exploring the QCD landscape with high-energy nuclear collisions
Quantum chromodynamics (QCD) phase diagram is usually plotted as temperature
(T) versus the chemical potential associated with the conserved baryon number
(\mu_{B}). Two fundamental properties of QCD, related to confinement and chiral
symmetry, allows for two corresponding phase transitions when T and \mu_{B} are
varied. Theoretically the phase diagram is explored through non-perturbative
QCD calculations on lattice. The energy scale for the phase diagram
(\Lambda_{QCD} ~ 200 MeV) is such that it can be explored experimentally by
colliding nuclei at varying beam energies in the laboratory. In this paper we
review some aspects of the QCD phase structure as explored through the
experimental studies using high energy nuclear collisions. Specifically, we
discuss three observations related to the formation of a strongly coupled
plasma of quarks and gluons in the collisions, experimental search for the QCD
critical point on the phase diagram and freeze-out properties of the hadronic
phase.Comment: Submitted to the New Journal of Physics focus issue "Strongly
Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas
- …