56 research outputs found

    Maternal plasma sequencing: a powerful tool towards fetal whole genome recovery

    Get PDF
    Noninvasive prenatal diagnosis of chromosomal aneuploidies, although challenging, has been achieved through the implementation of novel methodologies such as methylated DNA immunoprecipitation and next generation sequencing technologies. Nevertheless, additional developments are required towards the interpretation of other fetal abnormalities of higher complexity, such as de novo mutations including microdeletion and microduplication syndromes as well as complex diseases. The application of next generation sequencing technologies towards fetal whole genome recovery has demonstrated great potential to achieve the above goal. In a research article published in Genome Medicine, Chen et al. presented a novel approach that allowed more robust and accurate characterization of parental alleles compared with previous studies. This was achieved through a revolutionary strategy based on the use of trios and unrelated individuals that simultaneously targets the interpretation of the fetal haplotype and phenotype in one step. It is hereby shown that the implementation of a more accurate experimental design in combination with proper analytical tools can provide robust noninvasive fetal whole genome recovery with the potential for further developments beyond the DNA level

    Cryptic genomic imbalances in patients with de novo or familial apparently balanced translocations and abnormal phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carriers of apparently balanced translocations are usually phenotypically normal; however in about 6% of <it>de novo </it>cases, an abnormal phenotype is present. In the current study we investigated 12 patients, six <it>de novo </it>and six familial, with apparently balanced translocations and mental retardation and/or congenital malformations by applying 1 Mb resolution array-CGH. In all <it>de novo </it>cases, only the patient was a carrier of the translocation and had abnormal phenotype. In five out of the six familial cases, the phenotype of the patient was abnormal, although the karyotype appeared identical to other phenotypically normal carriers of the family. In the sixth familial case, all carriers of the translocations had an abnormal phenotype.</p> <p>Results</p> <p>Chromosomal and FISH analyses suggested that the rearrangements were "truly balanced" in all patients. However, array-CGH, revealed cryptic imbalances in three cases (3/12, 25%), two <it>de novo </it>(2/12, 33.3%) and one familial (1/12, 16.6%). The nature and type of abnormalities differed among the cases. In the first case, what was identified as a <it>de novo </it>t(9;15)(q31;q26.1), a complex rearrangement was revealed involving a ~6.1 Mb duplication on the long arm of chromosome 9, an ~10 Mb deletion and an inversion both on the long arm of chromosome 15. These imbalances were located near the translocation breakpoints. In the second case of a <it>de novo </it>t(4;9)(q25;q21.2), an ~6.6 Mb deletion was identified on the short arm of chromosome 7 which is unrelated to the translocation. In the third case, of a familial, t(4;7)(q13.3;p15.3), two deletions of ~4.3 Mb and ~2.3 Mb were found, each at one of the two translocation breakpoints. In the remaining cases the translocations appeared balanced at 1 Mb resolution.</p> <p>Conclusion</p> <p>This study investigated both <it>de novo </it>and familial apparently balanced translocations unlike other relatively large studies which are mainly focused on <it>de novo </it>cases. This study provides additional evidence that cryptic genomic imbalances are common in patients with abnormal phenotype and "apparently balanced" translocations not only in <it>de novo </it>but can also occur in familial cases. The use of microarrays with higher resolution such as oligo-arrays may reveal that the frequency of cryptic genomic imbalances among these patients is higher.</p

    Non-invasive prenatal diagnosis of aneuploidies: new technologies and clinical applications

    No full text

    Brief Communication: Variation in the Number of FMRl Microsatellite Repeats in Three Subgroups of the Hellenic Population

    No full text
    Microsatellites have been used for human evolution and origin studies by comparing their frequency, diversity, and allele size. In this study we report the analysis of three microsatellite loci, FMRl CGG and flanking DXS548 and FRAXAC2, in three separate groups of the Hellenic population: Athens, representing the genera] Hellenic population; Epirus (northwest Greece); and Cyprus. Significant variations in frequency and diversity were found in the three groups. Compared with Athens, Epirus had a tendency for longer alleles and a higher heterozygosity for DXS548. Cyprus had a frequency of CGG alleles similar to Athens but a low heterozygosity and a limited number of alleles at DXS548 and FRAXAC2. Allele differences of microsatellite loci not only are present in remote populations but also are evident between groups belonging to the same population. Microsatellite analysis could be a useful tool for identifying the origin of the founder chromosomes in intrapopulation studies and the time elapsed from the establishment of each population subgroup

    The Epigenome View: An Effort towards Non-Invasive Prenatal Diagnosis

    No full text
    Epigenetic modifications have proven to play a significant role in cancer development, as well as fetal development. Taking advantage of the knowledge acquired during the last decade, great interest has been shown worldwide in deciphering the fetal epigenome towards the development of methylation-based non-invasive prenatal tests (NIPT). In this review, we highlight the different approaches implemented, such as sodium bisulfite conversion, restriction enzyme digestion and methylated DNA immunoprecipitation, for the identification of differentially methylated regions (DMRs) between free fetal DNA found in maternal blood and DNA from maternal blood cells. Furthermore, we evaluate the use of selected DMRs identified towards the development of NIPT for fetal chromosomal aneuploidies. In addition, we perform a comparison analysis, evaluate the performance of each assay and provide a comprehensive discussion on the potential use of different methylation-based technologies in retrieving the fetal methylome, with the aim of further expanding the development of NIPT assays

    Screening of 50 Cypriot Patients with Autism Spectrum Disorders or Autistic Features Using 400K Custom Array-CGH

    Get PDF
    Autism spectrum disorders (ASDs) comprise a distinct entity of neurodevelopmental disorders with a strong genetic component. Despite the identification of several candidate genes and causative genomic copy number variations (CNVs), the majority of ASD cases still remain unresolved. We have applied microarray-based comparative genomic hybridization (array-CGH) using Agilent 400K custom array in the first Cyprus population screening for identification of ASD-associated CNVs. A cohort of 50 ASD patients (G1), their parents (G2), 50 ethnically matched normal controls (G3), and 80 normal individuals having children with various developmental and neurological conditions (G4) were tested. As a result, 14 patients were found to carry 20 potentially causative aberrations, two of which were de novo. Comparison of the four population groups revealed an increased rate of rare disease-associated variants in normal parents of children with autism. The above data provided additional evidence, supporting the complexity of ASD aetiology in comparison to other developmental disorders involving cognitive impairment. Furthermore, we have demonstrated the rationale of a more targeted approach combining accurate clinical description with high-resolution population-oriented genomic screening for defining the role of CNVs in autism and identifying meaningful associations on the molecular level
    • …
    corecore