906 research outputs found

    Bare metal stent versus paclitaxel eluting stent for intermediate length femoropopliteal arterial lesions (BATTLE trial): study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Currently, endovascular treatment is indicated to treat femoropopliteal lesions ≤15 cm. However, the Achilles’ heel of femoropopliteal endovascular repair remains restenosis. Paclitaxel eluting stents have shown promising results to prevent restenosis in femoropopliteal lesions compared to percutaneous transluminal angioplasty. A recently released prospective registry using a newer generation of self-expandable nitinol stents (Misago®; Terumo Corp., Tokyo, Japan) supports primary bare metal stenting as a first-line treatment for femoropopliteal lesions. To date, no studies have been designed to compare bare metal stents to paclitaxel eluting stents for the treatment of femoropoliteal lesions. The BATTLE trial was designed to compare paclitaxel eluting stents (Zilver® PTX®) and a last generation bare self-expandable nitinol stents (Misago® RX, Terumo Corp., Tokyo, Japan) in the treatment of intermediate length femoropopliteal lesions (≤14 cm). METHODS/DESIGN: A prospective, randomized (1:1), controlled, multicentric and international study has been designed. One hundred and eighty-six patients fulfilling the inclusion criteria will be randomized to one of the two assessments of endovascular repair to treat de novo femoropopliteal lesions ≤14 cm in symptomatic patients (Rutherford 2 to 5): bare stent group and paclitaxel eluting stent group. The primary endpoint is freedom from in-stent restenosis at 1 year defined by a peak systolic velocity index >2.4 (restenosis of >50%) at the target lesion and assessed by duplex scan. Our main objective is to demonstrate the clinical superiority of primary stenting using Zilver® PTX® stent system versus bare metal self-expandable stenting in the treatment of femoropopliteal lesions in patients with symptomatic peripheral arterial disease. DISCUSSION: This is the first randomized and controlled study to compare the efficacy of bare metal stents and paclitaxel eluting stents for the treatment of femoropopliteal lesions. It may clarify the indication of stent choice for femoropopliteal lesions of intermediate length. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT02004951. 3 December 2013

    Regional Carbon Fluxes from Land Use and Land Cover Change in Asia, 1980-2009

    Get PDF
    We present a synthesis of the land-atmosphere carbon flux from land use and land cover change (LULCC) in Asia using multiple data sources and paying particular attention to deforestation and forest regrowth fluxes. The data sources are quasi-independent and include the U.N. Food and Agriculture Organization-Forest Resource Assessment (FAO-FRA 2015; country-level inventory estimates), the Emission Database for Global Atmospheric Research (EDGARv4.3), the 'Houghton' bookkeeping model that incorporates FAO-FRA data, an ensemble of 8 state-of-the-art Dynamic Global Vegetation Models (DGVM), and 2 recently published independent studies using primarily remote sensing techniques. The estimates are aggregated spatially to Southeast, East, and South Asia and temporally for three decades, 1980–1989, 1990-1999 and 2000-2009. Since 1980, net carbon emissions from LULCC in Asia were responsible for 20%-40% of global LULCC emissions, with emissions from Southeast Asia alone accounting for 15%-25% of global LULCC emissions during the same period. In the 2000s and for all Asia, three estimates (FAO-FRA, DGVM, Houghton) were in agreement of a net source of carbon to the atmosphere, with mean estimates ranging between 0.24 to 0.41 Pg C yr?1, whereas EDGARv4.3 suggested a net carbon sink of ?0.17 Pg C yr?1. Three of 4 estimates suggest that LULCC carbon emissions declined by at least 34% in the preceding decade (1990-2000). Spread in the estimates is due to the inclusion of different flux components and their treatments, showing the importance to include emissions from carbon rich peatlands and land management, such as shifting cultivation and wood harvesting, which appear to be consistently underreported

    Age of air as a diagnostic for transport timescales in global models

    Get PDF
    This paper presents the first results of an age-of-air (AoA) inter-comparison of six global transport models. Following a protocol, three global circulation models and three chemistry transport models simulated five tracers with boundary conditions that grow linearly in time. This allows for an evaluation of the AoA and transport times associated with inter-hemispheric transport, vertical mixing in the troposphere, transport to and in the stratosphere, and transport of air masses between land and ocean. Since AoA is not a directly measurable quantity in the atmosphere, simulations of ²²²Rn and SF₆ were also performed. We focus this first analysis on averages over the period 2000–2010, taken from longer simulations covering the period 1988–2014. We find that two models, NIES and TOMCAT, show substantially slower vertical mixing in the troposphere compared to other models (LMDZ, TM5, EMAC, and ACTM). However, while the TOMCAT model, as used here, has slow transport between the hemispheres and between the atmosphere over land and ocean, the NIES model shows efficient horizontal mixing and a smaller latitudinal gradient in SF₆ compared to the other models and observations. We find consistent differences between models concerning vertical mixing of the troposphere, expressed as AoA differences and modelled ²²²Rn gradients between 950 and 500hPa. All models agree, however, on an interesting asymmetry in inter-hemispheric mixing, with faster transport from the Northern Hemisphere surface to the Southern Hemisphere than vice versa. This is attributed to a rectifier effect caused by a stronger seasonal cycle in boundary layer venting over Northern Hemispheric land masses, and possibly to a related asymmetric position of the intertropical convergence zone. The calculated AoA in the mid–upper stratosphere varies considerably among the models (4–7 years). Finally, we find that the inter-model differences are generally larger than differences in AoA that result from using the same model with a different resolution or convective parameterisation. Taken together, the AoA model inter-comparison provides a useful addition to traditional approaches to evaluate transport timescales. Results highlight that inter-model differences associated with resolved transport (advection, reanalysis data, nudging) and parameterised transport (convection, boundary layer mixing) are still large and require further analysis. For this purpose, all model output and analysis software are available

    TransCom model simulations of methane: Comparison of vertical profiles with aircraft measurements

    Get PDF
    To assess horizontal and vertical transports of methane (CH4) concentrations at different heights within the troposphere, we analyzed simulations by 12 chemistry transport models (CTMs) that participated in the TransCom-CH4 intercomparison experiment. Model results are compared with aircraft measurements at 13 sites in Amazon/Brazil, Mongolia, Pacific Ocean, Siberia/Russia, and United States during the period of 2001-2007. The simulations generally show good agreement with observations for seasonal cycles and vertical gradients. The correlation coefficients of the daily averaged model and observed CH4 time series for the analyzed years are generally larger than 0.5, and the observed seasonal cycle amplitudes are simulated well at most sites, considering the between-model variances. However, larger deviations show up below 2 km for the model-observation differences in vertical profiles at some locations, e.g., at Santarem, Brazil, and in the upper troposphere, e.g., at Surgut, Russia. Vertical gradients and concentrations are underestimated at Southern Great Planes, United States, and Santarem and overestimated at Surgut. Systematic overestimation and underestimation of vertical gradients are mainly attributed to inaccurate emission and only partly to the transport uncertainties. However, large differences in model simulations are found over the regions/seasons of strong convection, which is poorly represented in the models. Overall, the zonal and latitudinal variations in CH4 are controlled by surface emissions below 2.5 kmand transport patterns in the middle and upper troposphere. We show that the models with larger vertical gradients, coupled with slower horizontal transport, exhibit greater CH4 interhemispheric gradients in the lower troposphere. These findings have significant implications for the future development of more accurate CTMs with the possibility of reducing biases in estimated surface fluxes by inverse modelling

    Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959-2018

    Get PDF
    Quantification of CO2 fluxes at the Earth’s surface is required to evaluate the causes and drivers of observed increases in atmospheric CO2 concentrations. Atmospheric inversion models disaggregate observed variations in atmospheric CO2 concentration to variability in CO2 emissions and sinks. They require prior constraints fossil CO2 emissions. Here we describe GCP-GridFED (version 2019.1), a gridded fossil emissions dataset that is consistent with the national CO2 emissions reported by the Global Carbon Project (GCP). GCP-GridFEDv2019.1 provides monthly fossil CO2 emissions estimates for the period 1959-2018 at a spatial resolution of 0.1°. Estimates are provided separately for oil, coal and natural gas, for mixed international bunker fuels, and for the calcination of limestone during cement production. GCP-GridFED also includes gridded estimates of O2 uptake based on oxidative ratios for oil, coal and natural gas. It will be updated annually and made available for atmospheric inversions contributing to GCP global carbon budget assessments, thus aligning the prior constraints on top-down fossil CO2 emissions with the bottom-up estimates compiled by the GCP

    The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom : 1990-2017

    Get PDF
    Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27 C UK). We integrate recent emission inventory data, ecosystem process-based model results and inverse modeling estimates over the period 1990-2017. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported to the UN climate convention UNFCCC secretariat in 2019. For uncertainties, we used for NGHGIs the standard deviation obtained by varying parameters of inventory calculations, reported by the member states (MSs) following the recommendations of the IPCC Guidelines. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model-specific uncertainties when reported. In comparing NGHGIs with other approaches, a key source of bias is the activities included, e.g., anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011-2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 TgCH(4) yr (-1) (EDGAR v5.0) and 19.0 TgCH(4) yr(-1) (GAINS), consistent with the NGHGI estimates of 18.9 +/- 1.7 TgCH(4) yr(-1). The estimates of TD total inversions give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher-resolution atmospheric transport models give a mean emission of 28.8 TgCH(4) yr(-1). Coarser-resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 TgCH(4) yr(-1)) and surface network (24.4 TgCH(4) yr (-1)). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions, and geological sources together account for the gap between NGHGIs and inversions and account for 5.2 TgCH(4) yr(-1). For N2O emissions, over the 2011-2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 TgN(2)Oyr(-1), respectively, agreeing with the NGHGI data (0.9 0.6 TgN(2)Oyr(-1)). Over the same period, the average of the three total TD global and regional inversions was 1.3 +/- 0.4 and 1.3 +/- 0.1 TgN(2)Oyr(-1), respectively. The TD and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at the EU CUK scale and at the national scale.Peer reviewe

    The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom : 1990-2019

    Get PDF
    Funding Information: We thank Aurélie Paquirissamy, Géraud Moulas and the ARTTIC team for the great managerial support offered during the project. FAOSTAT statistics are produced and disseminated with the support of its member countries to the FAO regular budget. Annual, gap-filled and harmonized NGHGI uncertainty estimates for the EU and its member states were provided by the EU GHG inventory team (European Environment Agency and its European Topic Centre on Climate change mitigation). Most top-down inverse simulations referred to in this paper rely for the derivation of optimized flux fields on observational data provided by surface stations that are part of networks like ICOS (datasets: 10.18160/P7E9-EKEA , Integrated Non-CO Observing System, 2018a, and 10.18160/B3Q6-JKA0 , Integrated Non-CO Observing System, 2018b), AGAGE, NOAA (Obspack Globalview CH: 10.25925/20221001 , Schuldt et al., 2017), CSIRO and/or WMO GAW. We thank all station PIs and their organizations for providing these valuable datasets. We acknowledge the work of other members of the EDGAR group (Edwin Schaaf, Jos Olivier) and the outstanding scientific contribution to the VERIFY project of Peter Bergamaschi. Timo Vesala thanks ICOS-Finland, University of Helsinki. The TM5-CAMS inversions are available from https://atmosphere.copernicus.eu (last access: June 2022); Arjo Segers acknowledges support from the Copernicus Atmosphere Monitoring Service, implemented by the European Centre for Medium-Range Weather Forecasts on behalf of the European Commission (grant no. CAMS2_55). This research has been supported by the European Commission, Horizon 2020 Framework Programme (VERIFY, grant no. 776810). Ronny Lauerwald received support from the CLand Convergence Institute. Prabir Patra received support from the Environment Research and Technology Development Fund (grant no. JPMEERF20182002) of the Environmental Restoration and Conservation Agency of Japan. Pierre Regnier received financial support from the H2020 project ESM2025 – Earth System Models for the Future (grant no. 101003536). David Basviken received support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (METLAKE, grant no. 725546). Greet Janssens-Maenhout received support from the European Union's Horizon 2020 research and innovation program (CoCO, grant no. 958927). Tuula Aalto received support from the Finnish Academy (grants nos. 351311 and 345531). Sönke Zhaele received support from the ERC consolidator grant QUINCY (grant no. 647204).Peer reviewedPublisher PD

    Variability and quasi-decadal changes in the methane budget overthe period 2000–2012

    Get PDF
    Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4/ budget over 2000– 2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from topdown studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches.The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric inversion study to another. However, all topdown studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.Published11135–111616A. Geochimica per l'ambienteJCR Journa

    Intercomparison of atmospheric Carbonyl Sulfide (TransCom-COS; Part one): Evaluating the impact of transport and emissions on tropospheric variability using ground-based and aircraft data

    Get PDF
    We present a comparison of atmospheric transport model simulations for carbonyl sulfide (COS), within the framework of the ongoing atmospheric tracer transport model intercomparison project “TransCom”. Seven atmospheric transport models participated in the inter-comparison experiment and provided simulations of COS mixing ratios in the troposphere over a 9-year period (2010–2018), using prescribed state-of-the-art surface fluxes for various components of the atmospheric COS budget: biospheric sink, oceanic source, sources from fire and industry. Since the biosphere is the largest sink of COS, we tested sink estimates produced by two different biosphere models. The main goals of TransCom-COS are (a) to investigate the impact of the transport uncertainty and emission distribution in simulating the spatio-temporal variability of COS mixing ratios in the troposphere, and (b) to assess the sensitivity of simulated tropospheric COS mixing ratios to the seasonal and diurnal variability of the COS biosphere fluxes. To this end, a control case with state-of-the-art seasonal fluxes of COS was constructed. Models were run with the same fluxes and without chemistry to isolate transport differences. Further, two COS flux scenarios were compared: one using a biosphere flux with a monthly time resolution and the other using a biosphere flux with a three-hourly time resolution. In addition, we investigated the sensitivity of the simulated concentrations to different biosphere fluxes and to indirect oceanic emissions through dimethylsulfide (DMS) and carbon disulfide (CS2). The modelled COS mixing ratios were assessed against in-situ observations from surface stations and aircraft
    corecore