3 research outputs found

    CRISPR/Cas9-Mediated Constitutive Loss of VCP (Valosin-Containing Protein) Impairs Proteostasis and Leads to Defective Striated Muscle Structure and Function In Vivo

    No full text
    Valosin-containing protein (VCP) acts as a key regulator of cellular protein homeostasis by coordinating protein turnover and quality control. Mutations in VCP lead to (cardio-)myopathy and neurodegenerative diseases such as inclusion body myopathy with Paget’s disease of the bone and frontotemporal dementia (IBMPFD) or amyotrophic lateral sclerosis (ALS). To date, due to embryonic lethality, no constitutive VCP knockout animal model exists. Here, we generated a constitutive CRISPR/Cas9-induced vcp knockout zebrafish model. Similar to the phenotype of vcp morphant knockdown zebrafish embryos, we found that vcp-null embryos displayed significantly impaired cardiac and skeletal muscle function. By ultrastructural analysis of skeletal muscle cells and cardiomyocytes, we observed severely disrupted myofibrillar organization and accumulation of inclusion bodies as well as mitochondrial degeneration. vcp knockout was associated with a significant accumulation of ubiquitinated proteins, suggesting impaired proteasomal function. Additionally, markers of unfolded protein response (UPR)/ER-stress and autophagy-related mTOR signaling were elevated in vcp-deficient embryos, demonstrating impaired proteostasis in VCP-null zebrafish. In conclusion, our findings demonstrate the successful generation of a stable constitutive vcp knockout zebrafish line that will enable characterization of the detailed mechanistic underpinnings of vcp loss, particularly the impact of disturbed protein homeostasis on organ development and function in vivo

    CRISPR/Cas9-Mediated Constitutive Loss of VCP (Valosin-Containing Protein) Impairs Proteostasis and Leads to Defective Striated Muscle Structure and Function In Vivo

    No full text
    Valosin-containing protein (VCP) acts as a key regulator of cellular protein homeostasis by coordinating protein turnover and quality control. Mutations in VCP lead to (cardio-)myopathy and neurodegenerative diseases such as inclusion body myopathy with Paget’s disease of the bone and frontotemporal dementia (IBMPFD) or amyotrophic lateral sclerosis (ALS). To date, due to embryonic lethality, no constitutive VCP knockout animal model exists. Here, we generated a constitutive CRISPR/Cas9-induced vcp knockout zebrafish model. Similar to the phenotype of vcp morphant knockdown zebrafish embryos, we found that vcp-null embryos displayed significantly impaired cardiac and skeletal muscle function. By ultrastructural analysis of skeletal muscle cells and cardiomyocytes, we observed severely disrupted myofibrillar organization and accumulation of inclusion bodies as well as mitochondrial degeneration. vcp knockout was associated with a significant accumulation of ubiquitinated proteins, suggesting impaired proteasomal function. Additionally, markers of unfolded protein response (UPR)/ER-stress and autophagy-related mTOR signaling were elevated in vcp-deficient embryos, demonstrating impaired proteostasis in VCP-null zebrafish. In conclusion, our findings demonstrate the successful generation of a stable constitutive vcp knockout zebrafish line that will enable characterization of the detailed mechanistic underpinnings of vcp loss, particularly the impact of disturbed protein homeostasis on organ development and function in vivo

    Induction of a different immune response in non-titanized compared to titanized polypropylene meshes

    No full text
    It is well known that pelvic organ prolapse (POP) significantly reduces the quality of life of affected women and in many cases requires corrective surgery. Aim of the study was to compare the immune response against titanized versus non-titanized meshes, especially macrophage polarization and immune checkpoint association. For this, we analyzed 644 POP surgeries, which were performed between 2017 and 2022, in our department. Four of them needed revision surgery caused by erosion. We analyzed the influx of CD68 & CD163 positive macrophages and the expression of immune checkpoint molecules PD-L1 and PD1 in these 4 patients. We identified a large number of CD68 and CD163 positive macrophages and additionally a PD-L1 expression of these cells. Based on the in-vivo results, we isolated monocytes and co-cultivated monocytes with different mesh material covered with or without fibroblasts. We identified a significantly enhanced macrophage activation and PD-L1 expression in macrophages surrounding non-titanized polypropylene mesh material. Encapsulation of the material by fibroblasts was crucial for that. Specifically, CD68-positive macrophages are upregulated (p < 0.001), co-expressing PD-L1 (p < 0.001) in monocytes co-cultivated with non-titanized polypropylene meshes. Monocytes co-cultivated with titanized polypropylene meshes showed significantly lower expression of CD163 (p = 0.027) and PD-L1 (p = 0.022). In conclusion, our in vitro data suggest that the titanium coating leads to a decreased polarization of macrophages and to a decreased immune response compared to non-titanized meshes. This could be an indication for the increased incidence of erosion of the non-titanized meshes, which is a severe complication of this procedure and requires revision surgery. STATEMENT OF SIGNIFICANCE: Pelvic organ prolapse is a well-known problem for women and often requires corrective surgery. Polypropylene meshes are often used, which differ in their coating (titanized vs. non-titanized). A severe side effect of these surgeries is mesh erosion, due to onset of inflammation, which requires revision surgery. We examined all erosion cases (4 of 644 patients) with implanted nontitanium-coated meshes by immunohistochemistry and found upregulation of macrophage polarization (as markers CD68 and CD163) and increased expression of the immune checkpoint molecules PD-L1 and PD1. This suggests inflammatory processes and an enhanced immune response. In addition, we set up an in vitro experiment to investigate whether coating plays a role. Here, we demonstrated that the non-titanized meshes elicited a significantly higher immune response in comparison to titanized meshes, which could lead to the higher erosion rate of the non-titanized meshes. Our results highlight the benefit of titanized meshes, which should lead to a lower revision surgery rate and thus improved patient outcome
    corecore