33 research outputs found

    Heme oxygenase-1 and its metabolites affect pancreatic tumor growth in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer (PaCa) is a fatal human cancer due to its exceptional resistance to all current anticancer therapies. The cytoprotective enzyme heme oxygenase-1 (HO-1) is significantly overexpressed in PaCa and seems to play an important role in cancer resistance to anticancer treatment. The inhibition of HO-1 sensitized PaCa cells to chemo- and radiotherapy <it>in vitro</it>.</p> <p>Therefore, we investigated the effects of HO-1 and its metabolites biliverdin, carbon monoxide and iron on PaCa cells.</p> <p>PaCa cell lines with divergent HO-1 expression patterns were used in a murine orthotopic cancer model. HO-1 expression and activity was regulated by zinc (inhibition) and cobalt (induction) protoporphyrin. Furthermore, the influence of cellular HO-1 levels and its metabolites on effects of standard chemotherapy with gemcitabine was tested <it>in vivo </it>and <it>in vitro</it>.</p> <p>Results</p> <p>High HO-1 expression in PaCa cell lines was associated with increased chemoresistance <it>in vitro</it>. Chemoresistance to gemcitabine was increased during HO-1 induction in PaCa cells expressing low levels of HO-1. The inhibition of HO-1 activity in pancreatic tumors with high HO-1 boosted chemotherapeutic effects <it>in vivo </it>significantly. Furthermore, biliverdin and iron promoted PaCa resistance to chemotherapy. Consequently, specific iron chelation by desferrioxamine revealed profound anticancerous effects.</p> <p>Conclusion</p> <p>In summary, the inhibition of HO-1 and the chelation of iron in PaCa cells were associated with increased sensitivity and susceptibility of pancreatic tumors to chemotherapy <it>in vivo</it>. The metabolites biliverdin and iron seem to be involved in HO-1-mediated resistance to anticancer treatment. Therefore, HO-1 inhibition or direct interference with its metabolites may evolve new PaCa treatment strategies.</p

    Prognostic significance of EGFR, AREG and EREG amplification and gene expression in muscle invasive bladder cancer

    Get PDF
    IntroductionMuscle invasive bladder cancer (MIBC) remains a prevalent cancer with limited therapeutic options, obviating the need for innovative therapies. The epidermal growth factor receptor (EGFR) is a linchpin in tumor progression and presents a potential therapeutic target in MIBC. Additionally, the EGFR ligands AREG and EREG have shown associations with response to anti-EGFR therapy and improved progression-free survival in colorectal carcinoma.Materials and methodsWe investigated the prognostic significance of EGFR, AREG, and EREG in MIBC. Gene expression and copy number analyses were performed via qRT-PCR on tissue samples from 100 patients with MIBC who underwent radical cystectomy at the University Hospital Mannheim (MA; median age 72, interquartile range [IQR] 64–78 years, 25% female). Results were validated in 361 patients from the 2017 TCGA MIBC cohort (median age 69, IQR 60–77 years, 27% female), in the Chungbuk and MDACC cohort. Gene expressions were correlated with clinicopathologic parameters using the Mann-Whitney test, Kruskal-Wallis- test and Spearman correlation. For overall survival (OS), cancer-specific survival (CSS) and disease-free survival (DFS) gene expression was analyzed with Kaplan-Meier and Cox-proportional hazard models.ResultsSignificant gene expression differences in EGFR, AREG, and EREG could be detected in all cohorts. In the TCGA cohort, EGFR expression was significantly elevated in patients with EGFR amplification and KRAS wildtype. High AREG expression independently predicted longer OS (HR = 0.35, CI 0.19 - 0.63, p = 0.0004) and CSS (HR = 0.42, CI 0.18 – 0.95, p = 0.0378) in the MA cohort. In the TCGA cohort, high EGFR, AREG, and EREG expression correlated with shorter OS (AREG: HR = 1.57, CI 1.12 – 2.20, p = 0.0090) and DFS (EGFR: HR = 1.91, CI 1.31 – 2.8, p = 0.0008). EGFR amplification was also associated with reduced DFS.DiscussionHigh EGFR and EREG indicate worse survival in patients with MIBC. The prognostic role of AREG should further be investigated in large, prospective series. Divergent survival outcomes between the four cohorts should be interpreted cautiously, considering differences in analysis methods and demographics. Further in vitro investigations are necessary to elucidate the functional mechanisms underlying the associations observed in this study

    Concomitant Carcinoma in situ in Cystectomy Specimens Is Not Associated with Clinical Outcomes after Surgery

    Get PDF
    Objective: The aim of this study was to externally validate the prognostic value of concomitant urothelial carcinoma in situ (CIS) in radical cystectomy (RC) specimens using a large international cohort of bladder cancer patients. Methods: The records of 3,973 patients treated with RC and bilateral lymphadenectomy for urothelial carcinoma of the bladder (UCB) at nine centers worldwide were reviewed. Surgical specimens were evaluated by a genitourinary pathologist at each center. Uni- and multivariable Cox regression models addressed time to recurrence and cancer-specific mortality after RC. Results: 1,741 (43.8%) patients had concomitant CIS in their RC specimens. Concomitant CIS was more common in organ-confined UCB and was associated with lymphovascular invasion (p < 0.001). Concomitant CIS was not associated with either disease recurrence or cancer-specific death regardless of pathologic stage. The presence of concomitant CIS did not improve the predictive accuracy of standard predictors for either disease recurrence or cancer-specific death in any of the subgroups. Conclusions: We could not confirm the prognostic value of concomitant CIS in RC specimens. This, together with the discrepancy between pathologists in determining the presence of concomitant CIS at the morphologic level, limits the clinical utility of concomitant CIS in RC specimens for clinical decision-making. Copyright (C) 2011 S. Karger AG, Base

    Opportunities for Gas-Phase Science at Short-Wavelength Free-Electron Lasers with Undulator-Based Polarization Control

    Full text link
    Free-electron lasers (FELs) are the world's most brilliant light sources with rapidly evolving technological capabilities in terms of ultrabright and ultrashort pulses over a large range of accessible photon energies. Their revolutionary and innovative developments have opened new fields of science regarding nonlinear light-matter interaction, the investigation of ultrafast processes from specific observer sites, and approaches to imaging matter with atomic resolution. A core aspect of FEL science is the study of isolated and prototypical systems in the gas phase with the possibility of addressing well-defined electronic transitions or particular atomic sites in molecules. Notably for polarization-controlled short-wavelength FELs, the gas phase offers new avenues for investigations of nonlinear and ultrafast phenomena in spin orientated systems, for decoding the function of the chiral building blocks of life as well as steering reactions and particle emission dynamics in otherwise inaccessible ways. This roadmap comprises descriptions of technological capabilities of facilities worldwide, innovative diagnostics and instrumentation, as well as recent scientific highlights, novel methodology and mathematical modeling. The experimental and theoretical landscape of using polarization controllable FELs for dichroic light-matter interaction in the gas phase will be discussed and comprehensively outlined to stimulate and strengthen global collaborative efforts of all disciplines

    Neuropilin-2 and Its Transcript Variants Correlate with Clinical Outcome in Bladder Cancer

    No full text
    Urothelial bladder cancer ranks among the 10 most frequently diagnosed cancers worldwide. In our previous study, the transmembrane protein neuropilin-2 (NRP2) emerged as a predictive marker in patients with bladder cancer. NRP2 consists of several splice variants; the most abundant of these, NRP2a and NRP2b, are reported to have different biological functions in lung cancer progression. For other cancer types, there are no published data on the role of these transcript variants in cancer progression and the clinical outcome. Here, we correlate NRP2 and its two most abundant transcript variants, NRP2A and NRP2B, with the clinical outcome using available genomic data with subsequent validation in our own cohort of patients with muscle-invasive bladder cancer. In addition to NRP2, NRP1 and the NRP ligands PDGFC and PDGFD were studied. Only NRP2A emerged as an independent prognostic marker for shorter cancer-specific survival in muscle-invasive bladder cancer in our cohort of 102 patients who underwent radical cystectomy between 2008 and 2014 with a median follow-up time of 82 months. Additionally, we demonstrate that high messenger expression of NRP2, NRP1, PDGFC and PDGFD associates with a more aggressive disease (i.e., a high T stage, positive lymph node status and reduced survival)

    Phosphodiesterase SMPDL3B Gene Expression as Independent Outcome Prediction Marker in Localized Prostate Cancer

    No full text
    Current outcome prediction markers for localized prostate cancer (PCa) are insufficient. The impact of the lipid-modifying Sphingomyelin Phosphodiesterase Acid Like 3B (SMPDL3B) in PCa is unknown. Two cohorts of patients with PCa who underwent radical prostatectomy (n = 40, n = 56) and benign prostate hyperplasia (BPH) controls (n = 8, n = 11) were profiled for SMPDL3B expression with qRT-PCR. Publicly available PCa cohorts (Memorial Sloane Kettering Cancer Centre (MSKCC; n = 131, n = 29 controls) and The Cancer Genome Atlas (TCGA; n = 497, n = 53 controls)) served for validation. SMPDL3B&rsquo;s impact on proliferation and migration was analyzed in PC3 cells by siRNA knockdown. In both cohorts, a Gleason score and T stage independent significant overexpression of SMPDL3B was seen in PCa compared to BPH (p &lt; 0.001 each). A lower expression of SMPDL3B was associated with a shorter overall survival (OS) (p = 0.005) in long term follow-up. A SMPDL3B overexpression in PCa tissue was confirmed in the validation cohorts (p &lt; 0.001 each). In the TCGA patients with low SMPDL3B expression, biochemical recurrence-free survival (p = 0.011) and progression-free interval (p &lt; 0.001) were shorter. Knockdown of SMPDL3B impaired PC3 cell migration but not proliferation (p = 0.0081). In summary, SMPLD3B is highly overexpressed in PCa tissue, is inversely associated with localized PCa prognosis, and impairs PCa cell migration

    Structured Reporting in the Characterization of Renal Cysts by Contrast-Enhanced Ultrasound (CEUS) Using the Bosniak Classification System—Improvement of Report Quality and Interdisciplinary Communication

    No full text
    Background: This study aims to evaluate the potential benefits of structured reporting (SR) compared to conventional free-text reporting (FTR) in contrast-enhanced ultrasound (CEUS) of cystic renal lesions, based on the Bosniak classification. Methods: Fifty patients with cystic renal lesions who underwent CEUS were included in this single-center study. FTR created in clinical routine were compared to SR retrospectively generated by using a structured reporting template. Two experienced urologists evaluated the reports regarding integrity, effort for information extraction, linguistic quality, and overall quality. Results: The required information could easily be extracted by the reviewers in 100% of SR vs. 82% of FTR (p &lt; 0.001). The reviewers trusted the information given by SR significantly more with a mean of 5.99 vs. 5.52 for FTR (p &lt; 0.001). SR significantly improved the linguistic quality (6.0 for SR vs. 5.68 for FTR (p &lt; 0.001)) and the overall report quality (5.98 for SR vs. 5.58 for FTR (p &lt; 0.001)). Conclusions: SR significantly increases the quality of radiologic reports in CEUS examinations of cystic renal lesions compared to conventional FTR and represents a promising approach to facilitate interdisciplinary communication in the future

    Functional Characterization of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells

    No full text
    Endothelial cells derived from human induced pluripotent stem cells (hiPSC-ECs) provide a new opportunity for mechanistic research on vascular regeneration and drug screening. However, functions of hiPSC-ECs still need to be characterized. The objective of this study was to investigate electrophysiological and functional properties of hiPSC-ECs compared with primary human cardiac microvascular endothelial cells (HCMECs), mainly focusing on ion channels and membrane receptor signaling, as well as specific cell functions. HiPSC-ECs were derived from hiPS cells that were generated from human skin fibroblasts of three independent healthy donors. Phenotypic and functional comparison to HCMECs was performed by flow cytometry, immunofluorescence staining, quantitative reverse-transcription polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), tube formation, LDL uptake, exosome release assays and, importantly, patch clamp techniques. HiPSC-ECs were successfully generated from hiPS cells and were identified by endothelial markers. The mRNA levels of KCNN2, KCNN4, KCNMA1, TRPV2, and SLC8A1 in hiPSC-ECs were significantly higher than HCMECs. AT1 receptor mRNA level in hiPSC-ECs was higher than in HCMECs. AT2 receptor mRNA level was the highest among all receptors. Adrenoceptor ADRA2 expression in hiPSC-ECs was lower than in HCMECs, while ADRA1, ADRB1, ADRB2, and G-protein GNA11 and Gai expression were similar in both cell types. The expression level of muscarinic and dopamine receptors CHRM3, DRD2, DRD3, and DRD4 in hiPSC-ECs were significantly lower than in HCMECs. The functional characteristics of endothelial cells, such as tube formation and LDL uptake assay, were not statistically different between hiPSC-ECs and HCMECs. Phenylephrine similarly increased the release of the vasoconstrictor endothelin-1 (ET-1) in hiPSC-ECs and HCMECs. Acetylcholine also similarly increased nitric oxide generation in hiPSC-ECs and HCMECs. The resting potentials (RPs), ISK1&ndash;3, ISK4 and IK1 were similar in hiPSC-ECs and HCMECs. IBK was larger and IKATP was smaller in hiPSC-ECs. In addition, we also noted a higher expression level of exosomes marker CD81 in hiPSC-ECs and a higher expression of CD9 and CD63 in HCMECs. However, the numbers of exosomes extracted from both types of cells did not differ significantly. The study demonstrates that hiPSC-ECs are similar to native endothelial cells in ion channel function and membrane receptor-coupled signaling and physiological cell functions, although some differences exist. This information may be helpful for research using hiPSC-ECs
    corecore