5 research outputs found

    Gut microbiome signature and nasal lavage inflammatory markers in young people with asthma

    No full text
    Background: Asthma is a complex disease and a severe global public health problem resulting from interactions between genetic background and environmental exposures. It has been suggested that gut microbiota may be related to asthma development; however, such relationships needs further investigation. Objective: This study aimed to characterize the gut microbiota as well as the nasal lavage cytokine profile of asthmatic and nonasthmatic individuals. Methods: Stool and nasal lavage samples were collected from 29 children and adolescents with type 2 asthma and 28 children without asthma in Brazil. Amplicon sequencing of the stool bacterial V4 region of the 16S rRNA gene was performed using Illumina MiSeq. Microbiota analysis was performed by QIIME 2 and PICRUSt2. Type 2 asthma phenotype was characterized by high sputum eosinophil counts and positive skin prick tests for house dust mite, cockroach, and/or cat or dog dander. The nasal immune marker profile was assessed using a customized multiplex panel. Results: Stool microbiota differed significantly between asthmatic and nonasthmatic participants (P = .001). Bacteroides was more abundant in participants with asthma (P < .05), while Prevotella was more abundant in nonasthmatic individuals (P < .05). In people with asthma, the relative abundance of Bacteroides correlated with IL-4 concentration in nasal lavage samples. Inference of microbiota functional capacity identified differential fatty acid biosynthesis in asthmatic compared to nonasthmatic subjects. Conclusion: The stool microbiota differed between asthmatic and nonasthmatic young people in Brazil. Asthma was associated with higher Bacteroides levels, which correlated with nasal IL-4 concentration

    The Melbourne epidemic thunderstorm asthma event 2016: an investigation of environmental triggers, effect on health services, and patient risk factors

    No full text
    Background: A multidisciplinary collaboration investigated the world's largest, most catastrophic epidemic thunderstorm asthma event that took place in Melbourne, Australia, on Nov 21, 2016, to inform mechanisms and preventive strategies. Methods: Meteorological and airborne pollen data, satellite-derived vegetation index, ambulance callouts, emergency department presentations, and data on hospital admissions for Nov 21, 2016, as well as leading up to and following the event were collected between Nov 21, 2016, and March 31, 2017, and analysed. We contacted patients who presented during the epidemic thunderstorm asthma event at eight metropolitan health services (each including up to three hospitals) via telephone questionnaire to determine patient characteristics, and investigated outcomes of intensive care unit (ICU) admissions. Findings: Grass pollen concentrations on Nov 21, 2016, were extremely high (>100 grains/m3). At 1800 AEDT, a gust front crossed Melbourne, plunging temperatures 10°C, raising humidity above 70%, and concentrating particulate matter. Within 30 h, there were 3365 (672%) excess respiratory-related presentations to emergency departments, and 476 (992%) excess asthma-related admissions to hospital, especially individuals of Indian or Sri Lankan birth (10% vs 1%, p<0·0001) and south-east Asian birth (8% vs 1%, p<0·0001) compared with previous 3 years. Questionnaire data from 1435 (64%) of 2248 emergency department presentations showed a mean age of 32·0 years (SD 18·6), 56% of whom were male. Only 28% had current doctor-diagnosed asthma. 39% of the presentations were of Asian or Indian ethnicity (25% of the Melbourne population were of this ethnicity according to the 2016 census, relative risk [RR] 1·93, 95% CI 1·74–2·15, p <0·0001). Of ten individuals who died, six were Asian or Indian (RR 4·54, 95% CI 1·28–16·09; p=0·01). 35 individuals were admitted to an intensive care unit, all had asthma, 12 took inhaled preventers, and five died. Interpretation: Convergent environmental factors triggered a thunderstorm asthma epidemic of unprecedented magnitude, tempo, and geographical range and severity on Nov 21, 2016, creating a new benchmark for emergency and health service escalation. Asian or Indian ethnicity and current doctor-diagnosed asthma portended life-threatening exacerbations such as those requiring admission to an ICU. Overall, the findings provide important public health lessons applicable to future event forecasting, health care response coordination, protection of at-risk populations, and medical management of epidemic thunderstorm asthma. Funding: None
    corecore