5 research outputs found

    Space Telescope Imaging Spectrograph Parallel Observations of the Planetary Nebula M94-20

    Get PDF
    The planetary nebula M94--20 in the Large Magellanic Cloud was serendipitously observed with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope as part of the Hubble Space Telescope Archival Pure Parallel Program. We present spatially resolved imaging and spectral data of the nebula and compare them with ground based data, including detection of several emission lines from the nebula and the detection of the central star. We find the total H alpha + [NII] flux = 7.3e-15 erg s^-1 cm^-2 and we estimate the magnitude of the central star to be m_V = 26.0 +/- 0.2. Many other H alpha sources have been found in M31, M33 and NGC 205 as well. We discuss the use of the parallel observations as a versatile tool for planetary nebula surveys and for other fields of astronomical research.Comment: Latex, 14 pages, 2 JPEG figures, 2 tables. PASP Research Note, June 1999, in pres

    Imaging and spectroscopy of arcs around the most luminous X-ray cluster RX J1347.5-1145

    Get PDF
    The cluster RX J1347.5-1145, the most luminous cluster in the X-ray wavelengths, was imaged with the newly installed Space Telescope Imaging Spectrograph (STIS) on-board HST. Its relatively high redshift (0.451) and luminosity indicate that this is one of the most massive of all known clusters. The STIS images unambiguously show several arcs in the cluster. The largest two arcs (> 5 arcsec in length) are symmetrically situated on opposite sides of the cluster, at a distance of ~ 35 arcsec from the central galaxy. The STIS images also show approximately 100 faint galaxies within the radius of the arcs whose combined luminosity is ~ 4 x 10^11 Lsun. We also present ground-based spectroscopic observations of the northern arc which show one clear emission line at 6730 A, which is consistent with an identification as [OII] 3727 A, implying a redshift of 0.81 for this arc. The southern arc shows a faint continuum but no emission features. The surface mass within the radius of the arcs (240 kpc), as derived from the gravitational lensing, is 6.3 x 10^14 Msun. The resultant mass-to-light ratio of ~1200 is higher than what is seen in many clusters but smaller than the value recently derived for some `dark' X-ray clusters (Hattori et al. 1997). The total surface mass derived from the X-ray flux within the radius of the arcs is ~2.1 - 6.8 x 10^14 Msun, which implies that the ratio of the gravitational to the X-ray mass is ~1 to 3. The surface GAS mass within this radius is ~3.5 x 10^13 Msun, which implies that at least 6% of the total mass within this region is baryonic.Comment: 3 figures. Replaced with the final version as appears in the Astrophysical Journal Letters (Jan 10, 1998 issue). This incorporates some important revision

    Bad Astronomy

    No full text
    This web site is devoted to airing out myths and common misconceptions about astronomy and related topics. There is also a blog which the author, who is an astronomer, often posts to
    corecore