97 research outputs found
End-stage Renal Disease and Economic Incentives: The International Study of Health Care Organization and Financing
End-stage renal disease (ESRD), or kidney failure, is a debilitating, costly, and increasingly common medical condition. Little is known about how different financing approaches affect ESRD outcomes and delivery of care. This paper presents results from a comparative review of 12 countries with alternative models of incentives and benefits, collected under the International Study of Health Care Organization and Financing, a substudy within the Dialysis Outcomes and Practice Patterns Study. Variation in spending per ESRD patient is relatively small and is correlated with overall per capita health care spending. Between-country variations in spending are reduced using an input price parity index constructed for this study. Remaining differences in costs and outcomes do not seem strongly linked to differences in incentives embedded in national programs.
End-Stage Renal Disease and Economic Incentives: The International Study of Health Care Organization and Financing
End-stage renal disease (ESRD), or kidney failure, is a debilitating, costly, and increasingly common medical condition. Little is known about how different financing approaches affect ESRD outcomes and delivery of care. This paper presents results from a comparative review of 12 countries with alternative models of incentives and benefits, collected under the International Study of Health Care Organization and Financing, a substudy within the Dialysis Outcomes and Practice Patterns Study. Variation in spending per ESRD patient is relatively small and is correlated with overall per capita health care spending. Between-country variations in spending are reduced using an input price parity index constructed for this study. Remaining differences in costs and outcomes do not seem strongly linked to differences in incentives embedded in national programs
Meshless animation of fracturing solids
We present a new meshless animation framework for elastic and plastic materials that fracture. Central to our method is a highly dynamic surface and volume sampling method that supports arbitrary crack initiation, propagation, and termination, while avoiding many of the stability problems of traditional mesh-based techniques. We explicitly model advancing crack fronts and associated fracture surfaces embedded in the simulation volume. When cutting through the material, crack fronts directly affect the coupling between simulation nodes, requiring a dynamic adaptation of the nodal shape functions. We show how local visibility tests and dynamic caching lead to an efficient implementation of these effects based on point collocation. Complex fracture patterns of interacting and branching cracks are handled using a small set of topological operations for splitting, merging, and terminating crack fronts. This allows continuous propagation of cracks with highly detailed fracture surfaces, independent of the spatial resolution of the simulation nodes, and provides effective mechanisms for controlling fracture paths. We demonstrate our method for a wide range of materials, from stiff elastic to highly plastic objects that exhibit brittle and/or ductile fracture. Copyright © 2005 by the Association for Computing Machinery, Inc
Efficient raytracing of deforming point-sampled surfaces
We present efficient data structures and caching schemes to accelerate ray-surface intersections for deforming point-sampled surfaces. By exploiting spatial and temporal coherence of the deformation during the animation, we are able to improve rendering performance by a factor of two to three compared to existing techniques. Starting from a tight bounding sphere hierarchy for the undeformed object, we use a lazy updating scheme to adapt the hierarchy to the deformed surface in each animation step. In addition, we achieve a significant speedup for ray-surface intersections by caching per-ray intersection points. We also present a technique for rendering sharp edges and corners in point-sampled models by introducing a novel surface clipping algorithm. © The Eurographics Association and Blackwell Publishing 2005
Chronic Illness, Treatment Choice and Workforce Participation
Choices with respect to labor force participation and medical treatment are increasingly intertwined. Technological advances present patients with new choices and may facilitate continued employment for the growing number of chronically ill individuals. We examine joint work/treatment decisions of end stage renal disease patients, a group for whom these tradeoffs are particularly salient. Using a simultaneous equations probit model, we find that treatment choice is a significant predictor of employment status. However, the effect size is considerably smaller than in models that do not consider the joint nature of these choices.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45858/1/10754_2004_Article_5145693.pd
Mucus detachment by host metalloprotease meprin \beta requires shedding of its inactive pro-form, which is abrogated by the pathogenic protease RgpB
The host metalloprotease meprin β is required for mucin 2 (MUC2) cleavage, which drives intestinal mucus detachment and prevents bacterial overgrowth. To gain access to the cleavage site in MUC2, meprin β must be proteolytically shed from epithelial cells. Hence, regulation of meprin β shedding and activation is important for physiological and pathophysiological conditions. Here, we demonstrate that meprin β activation and shedding are mutually exclusive events. Employing ex vivo small intestinal organoid and cell culture experiments, we found that ADAM-mediated shedding is restricted to the inactive pro-form of meprin β and is completely inhibited upon its conversion to the active form at the cell surface. This strict regulation of meprin β activity can be overridden by pathogens, as demonstrated for the bacterial protease Arg-gingipain (RgpB). This secreted cysteine protease potently converts membrane-bound meprin β into its active form, impairing meprin β shedding and its function as a mucus-detaching protease
Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas
Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector
A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing
Purpose
Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned.
Methods
Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted.
Results
We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency).
Conclusion
The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock
- …