442 research outputs found
Antenna Near-Field Probe Station Scanner
A miniaturized antenna system is characterized non-destructively through the use of a scanner that measures its near-field radiated power performance. When taking measurements, the scanner can be moved linearly along the x, y and z axis, as well as rotationally relative to the antenna. The data obtained from the characterization are processed to determine the far-field properties of the system and to optimize the system. Each antenna is excited using a probe station system while a scanning probe scans the space above the antenna to measure the near field signals. Upon completion of the scan, the near-field patterns are transformed into far-field patterns. Along with taking data, this system also allows for extensive graphing and analysis of both the near-field and far-field data. The details of the probe station as well as the procedures for setting up a test, conducting a test, and analyzing the resulting data are also described
Bone area provides a responsive outcome measure for bone changes in short-term knee osteoarthritis studies
Objective: This post-hoc study analyzed 3D bone area from an osteoarthritis (OA) cohort demonstrating no change in cartilage thickness. Methods: 27 women with painful medial knee OA had MRI at 0, 3 and 6 months. Images were analysed using active appearance models. Results: At 3 and 6 months the mean change in medial femoral bone area was 0.34% [95% CI 0.04, 0.64] and 0.61% [CI 0.32, 0.90]. 40% of subjects had progression > SDD at 6 months. Conclusion: In this small cohort at high risk of OA progression, bone area changed at 3 and 6 months when cartilage morphometric measures did not
Probe Station and Near-Field Scanner for Testing Antennas
A facility that includes a probe station and a scanning open-ended waveguide probe for measuring near electromagnetic fields has been added to Glenn Research Center's suite of antenna-testing facilities, at a small fraction of the cost of the other facilities. This facility is designed specifically for nondestructive characterization of the radiation patterns of miniaturized microwave antennas fabricated on semiconductor and dielectric wafer substrates, including active antennas that are difficult to test in traditional antenna-testing ranges because of fragility, smallness, or severity of DC-bias or test-fixture requirements. By virtue of the simple fact that a greater fraction of radiated power can be captured in a near-field measurement than in a conventional far-field measurement, this near-field facility is convenient for testing miniaturized antennas with low gains
Revisiting Combinatorial Ambiguities at Hadron Colliders with MT2
We present a method to resolve combinatorial issues in multi-particle final
states at hadron colliders. The use of kinematic variables such as MT2 and
invariant mass significantly reduces combinatorial ambiguities in the signal,
but at a cost of losing statistics. We illustrate this idea with gluino pair
production leading to 4 jets +\met in the final state as well as
production in the dilepton channel. Compared to results in recent studies, our
method provides greater efficiency with similar purityComment: 20 pages, 7 figures, 10 table
Chemoprevention of nonmelanoma skin cancer: experience with a polyphenol from green tea.
Nonmelanoma skin cancer is extremely common and is increasing in incidence. It would be very useful to have forms of therapy that would prevent precancerous changes from going on to form cancer, or to reverse the precancerous changes. Epidemiologic evidence in humans, in vitro studies on human cells, and clinical experiments in animals have identified polyphenol compounds found in tea to be possibly useful in reducing the incidence of various cancers, including skin cancer. To examine the potential for a polyphenol from green tea, epigallocatechin gallate, to act as a chemopreventive agent for nonmelanoma skin cancer, a randomized, double-blind, placebo-controlled phase II clinical trial of topical epigallocatechin gallate in the prevention of nonmelanoma skin cancer was performed
Growth and mass wasting of volcanic centers in the northern South Sandwich arc, South Atlantic, revealed by new multibeam mapping
New multibeam (swath) bathymetric sonar data acquired using an EM120 system on the RRS James Clark Ross, supplemented by sub-bottom profiling, reveals the underwater morphology of a not, vert, similar 12,000 km2 area in the northern part of the mainly submarine South Sandwich volcanic arc. The new data extend between 55Ā° 45ā²S and 57Ā° 20ā²S and include Protector Shoal and the areas around Zavodovski, Visokoi and the Candlemas islands groups. Each of these areas is a discrete volcanic center. The entirely submarine Protector Shoal area, close to the northern limit of the arc, forms a 55 km long eastāwest-trending seamount chain that is at least partly of silicic composition. The seamounts are comparable to small subaerial stratovolcanoes in size, with volumes up to 83 km3, indicating that they are the product of multiple eruptions over extended periods. Zavodovski, Visokoi and the Candlemas island group are the summits of three 3ā3.5 km high volcanic edifices. The bathymetric data show evidence for relationships between constructional volcanic features, including migrating volcanic centers, structurally controlled constructional ridges, satellite lava flows and domes, and mass wasting of the edifices. Mass wasting takes place mainly by strong erosion at sea level, and dispersal of this material along chutes, probably as turbidity currents and other mass flows that deposit in extensive sediment wave fields. Large scale mass wasting structures include movement of unconsolidated debris in slides, slumps and debris avalanches. Volcanism is migrating westward relative to the underlying plate and major volcanoes are asymmetrical, being steep with abundant recent volcanism on their western flanks, and gently sloping with extinct, eroded volcanic sequences to their east. This is consistent with the calculated rate of subduction erosion of the fore-arc
A survey of partial differential equations in geometric design
YesComputer aided geometric design is an area
where the improvement of surface generation techniques
is an everlasting demand since faster and more accurate
geometric models are required. Traditional methods
for generating surfaces were initially mainly based
upon interpolation algorithms. Recently, partial differential
equations (PDE) were introduced as a valuable
tool for geometric modelling since they offer a number
of features from which these areas can benefit. This work
summarises the uses given to PDE surfaces as a surface
generation technique togethe
The Cosmology of Composite Inelastic Dark Matter
Composite dark matter is a natural setting for implementing inelastic dark
matter - the O(100 keV) mass splitting arises from spin-spin interactions of
constituent fermions. In models where the constituents are charged under an
axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark
matter scatters inelastically off Standard Model nuclei and can explain the
DAMA/LIBRA annual modulation signal. This article describes the early Universe
cosmology of a minimal implementation of a composite inelastic dark matter
model where the dark matter is a meson composed of a light and a heavy quark.
The synthesis of the constituent quarks into dark mesons and baryons results in
several qualitatively different configurations of the resulting dark matter
hadrons depending on the relative mass scales in the system.Comment: 31 pages, 4 figures; references added, typos correcte
- ā¦