61 research outputs found

    One pot ‘click’ reactions: tandem enantioselective biocatalytic epoxide ring opening and [3+2] azide alkyne cycloaddition

    Get PDF
    Halohydrin dehalogenase (HheC) can perform enantioselective azidolysis of aromatic epoxides to 1,2-azido alcohols which are subsequently ligated to alkynes producing chiral hydroxy triazoles in a one-pot procedure with excellent enantiomeric excess.

    Feasibility Study to Assess Canagliflozin Distribution and Sodium-Glucose Co-Transporter 2 Occupancy Using [18F]Canagliflozin in Patients with Type 2 Diabetes

    Get PDF
    Sodium-glucose co-transporter 2 (SGLT2) inhibitors, including canagliflozin, reduce the risk of cardiovascular and kidney outcomes in patients with and without type 2 diabetes, albeit with a large inter-individual variation. The underlying mechanisms for this variation in response might be attributed to differences in SGLT2 occupancy, resulting from individual variation in plasma and tissue drug exposure and receptor availability. We performed a feasibility study for the use of [ 18 F]Canagliflozin positron emission tomography (PET) imaging to determine the association between clinical canagliflozin doses and SGLT2 occupancy in patients with type 2 diabetes. We obtained two 90-min dynamic PET scans with diagnostic intravenous [ 18 F]Canagliflozin administration and a full kinetic analysis in seven patients with type 2 diabetes. Patients received 50, 100 or 300mg oral canagliflozin (n=2:4:1) 2.5 hours before the second scan. Canagliflozin pharmacokinetics and urinary glucose excretion were measured. The apparent SGLT2 occupancy was derived from the difference between the apparent volume of distribution of [ 18 F]Canagliflozin in the baseline and post-drug PET scans. Individual canagliflozin area under the curve from oral dosing until 24-hours (AUC P0-24h ) varied largely (range 1715-25747 ÎŒg/L*h, mean 10580 ÎŒg/L*h) and increased dose dependently with mean values of 4543, 6525 and 20012 ÎŒg/L*h for 50, 100 and 300mg respectively (P=0.046). SGLT2 occupancy ranged between 65 and 87%, but did not correlate with canagliflozin dose, plasma exposure or urinary glucose excretion. We report the feasibility of [ 18 F]Canagliflozin PET imaging to determine canagliflozin kidney disposition and SGLT2 occupancy. This suggests the potential of [ 18 F]Canagliflozin as a tool to visualize and quantify clinically SGLT2 tissue binding. </p

    In Vivo Induction of P‑Glycoprotein Function can be Measured with [18F]MC225 and PET

    Get PDF
    P-Glycoprotein (P-gp) is an efflux pump located at the blood−brain barrier (BBB) that contributes to the protection of the central nervous system by transporting neurotoxic compounds out of the brain. A decline in P-gp function has been related to the pathogenesis of neurodegenerative diseases. P-gp inducers can increase the P-gp function and are considered as potential candidates for the treatment of such disorders. The P-gp inducer MC111 increased P-gp expression and function in SW480 human colon adenocarcinoma and colo-320 cells, respectively. Our study aims to evaluate the P-gp inducing effect of MC111 in the whole brain in vivo, using the P-gp tracer [18F]MC225 and positron emission tomography (PET). Eighteen Wistar rats were treated with either vehicle solution, 4.5 mg/kg of MC111 (low-dose group), or 6 mg/kg of MC111 (high-dose group). Animals underwent a 60 min dynamic PET scan with arterial-blood sampling, 24 h after treatment with the inducer. Data were analyzed using the 1-tissue-compartment model and metabolite-corrected plasma as the input function. Model parameters such as the influx constant (K1) and volume of distribution (VT) were calculated, which reflectthe in vivo P-gp function. P-gp and pregnane xenobiotic receptor (PXR) expression levels of the whole brain were assessed using western blot. The administration of MC111 decreased K1 and VT of [18F]MC225 in the whole brain and all of the selected brain regions. In the high-dose group, whole-brain K1 was decreased by 34% (K1-high-dose = 0.20 ± 0.02 vs K1-control = 0.30 ± 0.02; p &lt; 0.001) and in the low-dose group by 7% (K1-low-dose = 0.28 ± 0.02 vs K1-control = 0.30 ± 0.02; p = 0.42) compared to controls. Whole-brain VT was decreased by 25% in the high-dose group (VT-high-dose = 5.92 ± 0.41 vs VT-control = 7.82 ± 0.38; p &lt; 0.001) and by 6% in the low-dose group (VT-low-dose = 7.35 ± 0.38 vs VT-control = 7.82 ± 0.37; p = 0.38) compared to controls. k2 values did not vary after treatment. The treatment did not affect the metabolism of [18F]MC225. Western blot studies using the whole brain tissue did not detect changes in the P-gp expression, however, preliminary results using isolated brain capillaries found an increasing trend up to 37% in treated rats. The decrease in K1 and VT values after treatment with the inducer indicates an increase in the P-gp functionality at the BBB of treated rats. Moreover, preliminary results using brain endothelial cells also sustained the increase in the P-gp expression. In conclusion, the results verify that MC111 induces P-gp expression and function at the BBB in rats. An increasing trend regarding the P-gp expression levels is found using western blot and an increased P-gp function is confirmed with [18F]MC225 and PET

    Other Radiopharmaceuticals for Imaging GEP‐NET

    Get PDF
    In GEP‐NETs, especially the catecholamine and serotonin biosynthetic pathways are upregulated. Therefore, increased biosynthesis of these specific amines in GEP‐NETs enables imaging with specific amine precursors. For the catecholamine pathway, 6‐18F ‐l‐3,4‐dihydroxyphenylalanine (18F‐DOPA) is available, while for the serotonin pathway, carbon‐11‐labeled 5‐hydroxy‐l‐tryptophan ([11C]‐5‐HTP) is available as tracer. 11C‐5‐HTP PET and 18F‐DOPA PET are excellent functional imaging techniques for evaluating patients with proven pancreatic islet cell tumors and carcinoids. For both tracers, the combination with CT further improves the detection rate of NET, which shows that performing PET scans with these tracers in PET/CT scanners is beneficial for patients.Since well‐differentiated GEP‐NETs generally have a low glucose metabolism, 18F‐fluorodexyglucose (18F‐FDG) PET scanning has limited value for the primary staging of patients with well‐differentiated GEP‐NETs. However, in patients with rapidly progressive disease, dedifferentiation of GEP‐NET tumors can lead to a higher glucose metabolism in tumor cells. In these patients, 18F‐FDG PET can be of benefit for tumor staging. Also, 18F‐FDG PET can be of value when other malignancies are suspected in patients with GEP‐NETs, since these patients experience a higher incidence of these malignancies compared to the general population.Nowadays, (GEP)‐NETs can also be imaged with 68Ga‐labeled analogues of somatostatin, which are also PET tracers. Advantages of 68Ga‐labeled somatostatin analogues are the relatively easy generator‐based synthesis and the possibility to evaluate whether peptide (somatostatin) receptor radionuclide therapy (PRRT) for NETs can be considered

    Pharmacological screening identifies SHK242 and SHK277 as novel arginase inhibitors with efficacy against allergen-induced airway narrowing in vitro and in vivo

    Get PDF
    Arginase is a potential target for asthma treatment. However, there are currently no arginase inhibitors available for clinical use. Here, a novel class of arginase inhibitors was synthesized, and their efficacy was pharmacologically evaluated. The reference compound 2(S)-amino-6-boronohexanoic acid (ABH) and >200 novel arginase inhibitors were tested for their ability to inhibit recombinant human arginase 1 and 2 in vitro. The most promising compounds were separated as enantiomers. Enantiomer pairs SHK242 and SHK243, and SHK277 and SHK278 were tested for functional efficacy by measuring their effect on allergen-induced airway narrowing in lung slices of ovalbumin-sensitized guinea pigs ex vivo. A guinea pig model of acute allergic asthma was used to examine the effect of the most efficacious enantiopure arginase inhibitors on allergen-induced airway hyper-responsiveness (AHR), early and late asthmatic reactions (EAR and LAR), and airway inflammation in vivo. The novel compounds were efficacious in inhibiting arginase 1 and 2 in vitro. The enantiopure SHK242 and SHK277 fully inhibited arginase activity, with IC50 values of 3.4 and 10.5 ΌM for arginase 1 and 2.9 and 4.0 ”M for arginase 2, respectively. Treatment of slices with ABH or novel compounds resulted in decreased ovalbumin-induced airway narrowing compared with control, explained by increased local nitric oxide production in the airway. In vivo, ABH, SHK242, and SHK277 protected against allergen-induced EAR and LAR but not against AHR or lung inflammation. We have identified promising novel arginase inhibitors for the potential treatment of allergic asthma that were able to protect against allergen-induced early and late asthmatic reactions. SIGNIFICANCE STATEMENT: Arginase is a potential drug target for asthma treatment, but currently there are no arginase inhibitors available for clinical use. We have identified promising novel arginase inhibitors for the potential treatment of allergic asthma that were able to protect against allergen-induced early and late asthmatic reactions. Our new inhibitors show protective effects in reducing airway narrowing in response to allergens and reductions in the early and late asthmatic response

    Development and evaluation of interleukin-2 derived radiotracers for PET imaging of T-cells in mice

    Get PDF
    Recently, N-(4-18F-fluorobenzoyl)-interleukin-2 (18F-FB-IL2) was introduced as a PET tracer for T cell imaging. However, production is complex and time-consuming. Therefore, we developed 2 radiolabeled IL2 variants, namely aluminum 18F-fluoride-(restrained complexing agent)-IL2 (18F-AlF-RESCA-IL2) and 68Ga-gallium-(1,4,7-triazacyclononane-4,7-diacetic acid-1-glutaric acid)-IL2 (68Ga-Ga-NODAGA-IL2), and compared their in vitro and in vivo characteristics with 18F-FB-IL2. Methods: Radiolabeling of 18F-AlF-RESCA-IL2 and 68Ga-Ga-NODAGA-IL2 was optimized, and stability was evaluated in human serum. Receptor binding was studied with activated human peripheral blood mononuclear cells (hPBMCs). Ex vivo tracer biodistribution in immunocompetent BALB/cOlaHsd (BALB/c) mice was performed at 15, 60, and 90 min after tracer injection. In vivo binding characteristics were studied in severe combined immunodeficient (SCID) mice inoculated with activated hPBMCs in Matrigel. Tracer was injected 15 min after hPBMC inoculation, and a 60-min dynamic PET scan was acquired, followed by ex vivo biodistribution studies. Specific uptake was determined by coinjection of tracer with unlabeled IL2 and by evaluating uptake in a control group inoculated with Matrigel only. Results:68Ga-Ga-NODAGA-IL2 and 18F-AlF-RESCA-IL2 were produced with radiochemical purity of more than 95% and radiochemical yield of 13.1% ± 4.7% and 2.4% ± 1.6% within 60 and 90 min, respectively. Both tracers were stable in serum, with more than 90% being intact tracer after 1 h. In vitro, both tracers displayed preferential binding to activated hPBMCs. Ex vivo biodistribution studies on BALB/c mice showed higher uptake of 18F-AlF-RESCA-IL2 than of 18F-FB-IL2 in liver, kidney, spleen, bone, and bone marrow. 68Ga-Ga-NODAGA-IL2 uptake in liver and kidney was higher than 18F-FB-IL2 uptake. In vivo, all tracers revealed uptake in activated hPBMCs in SCID mice. Low uptake was seen after a blocking dose of IL2 and in the Matrigel control group. In addition, 18F-AlF-RESCA-IL2 yielded the highest-contrast PET images of target lymph nodes. Conclusion: Production of 18F-AlF-RESCA-IL2 and 68Ga-Ga-NODAGA-IL2 is simpler and faster than that of 18F-FB-IL2. Both tracers showed good in vitro and in vivo characteristics, with high uptake in lymphoid tissue and hPBMC xenografts

    Synthesis and evaluation in rats of homologous series of [F-18]-labeled dopamine D-2/3 receptor agonists based on the 2-aminomethylchroman scaffold as potential PET tracers

    Get PDF
    Background: Agonist positron emission tomography (PET) tracers for dopamine D-2/3 receptors (D(2/3)Rs) offer greater sensitivity to changes in endogenous dopamine levels than D2/3R antagonist tracers. D2/3R agonist tracers currently available for clinical research are labeled with the short-lived isotope carbon-11, which limits their use. We aimed to develop high-affinity D2R agonists amenable for labeling with the longer-living fluorine-18. Here, we report the evaluation as potential PET tracers of two homologous series of [F-18]fluorinated tracers based on the 2-aminomethylchroman-7-ol (AMC) scaffold: (R)-2-((4-(2-fluoroalkoxy)benzylamino)methyl)chroman-7-ols (AMC13 homologues) and (R)-2-((2-(4-(4-(fluoroalkoxy)phenyl)piperazin-1-yl)ethylamino)methyl)chroman-7-ols (AMC15 homologues). We varied the length of the F-18-fluoroalkyl chain in these structures to balance brain penetration and non-specific binding of the radioligands by adjusting their lipophilicity. Methods: The tracers were evaluated in brain slices of Sprague-Dawley rats by in vitro autoradiography and in living rats by microPET imaging and ex vivo autoradiography. PET data were analyzed with one- and two-tissue compartmental models (1TCM/2TCM), simplified reference tissue model (SRTM), and Logan graphical analysis. Specificity of binding was tested by blocking D2/3R with raclopride. Results: Homologues with a shorter fluoroalkyl chain consistently showed greater D2/3R-specific-to-total binding ratios in the striatum than those with longer chains. The fluoroethoxy homologue of AMC13 ([F-18]FEt-AMC13) demonstrated the highest degree of D2/3R-specific binding among the evaluated tracers: mean striatum-to-cerebellum uptake ratio reached 4.4 in vitro and 2.1/2.8 in vivo/ex vivo (PET/autoradiography). Striatal binding potential (BPND) relative to cerebellum was 0.51-0.63 depending on the estimation method. Radiometabolites of [F-18]FEt-AMC13 did not enter the brain. In vitro, application of 10 mu mol/L raclopride reduced D2/3R-specific binding of [F-18]FEt-AMC13 in the striatum by 81 %. In vivo, pre-treatment with 1 mg/kg (2.9 mu mol/kg) raclopride led to 17-39 % decrease in D2/3R-specific binding in the striatum. Conclusions: Varying the length of the [F-18]fluoroalkyl chain helped improve the characteristics of the original candidate tracers. Further modifications of the current lead [F-18]FEt-AMC13 can provide an agonist radiopharmaceutical suitable for D2/3R imaging by PET

    Modular Medical Imaging Agents Based on Azide-Alkyne Huisgen Cycloadditions:Synthesis and Pre-Clinical Evaluation of(18)F-Labeled PSMA-Tracers for Prostate Cancer Imaging

    Get PDF
    Since the seminal contribution of Rolf Huisgen to develop the [3+2] cycloaddition of 1,3-dipolar compounds, its azide–alkyne variant has established itself as the key step in numerous organic syntheses and bioorthogonal processes in materials science and chemical biology. In the present study, the copper(I)-catalyzed azide–alkyne cycloaddition was applied for the development of a modular molecular platform for medical imaging of the prostate-specific membrane antigen (PSMA), using positron emission tomography. This process is shown from molecular design, through synthesis automation and in vitro studies, all the way to pre-clinical in vivo evaluation of fluorine-18- labeled PSMA-targeting ‘F-PSMA-MIC’ radiotracers (t1/2=109.7 min). Pre-clinical data indicate that the modular PSMA-scaffold has similar binding affinity and imaging properties to the clinically used [68Ga]PSMA-11. Furthermore, we demonstrated that targeting the arene-binding in PSMA, facilitated through the [3+2]cycloaddition, can improve binding affinity, which was rationalized by molecular modeling. The here presented PSMA-binding scaffold potentially facilitates easy coupling to other medical imaging moieties, enabling future developments of new modular imaging agents

    Studio E419 cello recital

    No full text
    Johann Sebastian BachGaspar CassadoFranz SchubertLudwig van BeethovenMax BruchEdouard LaloRobert SchumannDigital audio of these performances is not yet available. You may submit a request for these recordings to be digitized and made available at this site within 10 work days at http://lib.asu.edu/music/services/perfdigitizeform?identifier=1999/11-12&title=Studio+E419+cello+recita
    • 

    corecore