17 research outputs found

    Multifunctional volumetric meta-optics for color and polarization image sensors

    Get PDF
    Three-dimensional elements, with refractive index distribution structured at sub-wavelength scale, provide an expansive optical design space that can be harnessed for demonstrating multi-functional free-space optical devices. Here we present 3D dielectric elements, designed to be placed on top of the pixels of image sensors, that sort and focus light based on its color and polarization with efficiency significantly surpassing 2D absorptive and diffractive filters. The devices are designed via iterative gradient-based optimization to account for multiple target functions while ensuring compatibility with existing nanofabrication processes, and experimentally validated using a scaled device that operates at microwave frequencies. This approach combines arbitrary functions into a single compact element even where there is no known equivalent in bulk optics, enabling novel integrated photonic applications

    Topology optimized multi-functional mechanically reconfigurable meta-optics studied at microwave frequencies

    Get PDF
    Metasurfaces advanced the field of optics by reducing the thickness of optical components and merging multiple functionalities into a single layer device. However, this generally comes with a reduction in performance, especially for multifunctional and broadband applications. Three-dimensional metastructures can provide the necessary degrees of freedom for advanced applications, while maintaining minimal thickness. This work explores 3D mechanically reconfigurable devices that perform focusing, spectral demultiplexing, and polarization sorting based on mechanical configuration. As proof of concept, a rotatable device, auxetic device, and a shearing-based device are designed with adjoint-based topology optimization, 3D-printed, and measured at microwave frequencies (7.6-11.6 GHz) in an anechoic chamber

    3D-Patterned Inverse-Designed Mid-Infrared Metaoptics

    Full text link
    Modern imaging systems can be enhanced in efficiency, compactness, and application through introduction of multilayer nanopatterned structures for manipulation of light based on its fundamental properties. High transmission efficiency multispectral imaging is surprisingly elusive due to the commonplace use of filter arrays which discard most of the incident light. Further, most cameras do not leverage the wealth of information in polarization and spatial degrees of freedom. Optical metamaterials can respond to these electromagnetic properties but have been explored primarily in single-layer geometries, limiting their performance and multifunctional capacity. Here we use advanced two-photon lithography to realize multilayer scattering structures that achieve highly nontrivial optical transformations intended to process light just before it reaches a focal plane array. Computationally optimized multispectral and polarimetric sorting devices are fabricated with submicron feature sizes and experimentally validated in the mid-infrared. A final structure shown in simulation redirects light based on its angular momentum. These devices demonstrate that with precise 3-dimensional nanopatterning, one can directly modify the scattering properties of a sensor array to create advanced imaging systems.Comment: 32 pages, 4 main figures, 12 supplementary figure

    Monolithic CMOS-compatible zero-index metamaterials

    Full text link
    Zero-index materials exhibit exotic optical properties that can be utilized for integrated-optics applications. However, practical implementation requires compatibility with complementary metallic-oxide-semiconductor (CMOS) technologies. We demonstrate a CMOS-compatible zero-index metamaterial consisting of a square array of air holes in a 220-nm-thick silicon-on-insulator (SOI) wafer. This design is achieved through a Dirac-cone dispersion. The metamaterial is entirely composed of silicon and offers compatibility through low-aspect-ratio structures that can be simply fabricated in a standard device layer. This platform enables mass adoption and exploration of zero-index-based photonic devices at low cost and high fidelity.Comment: 18 pages, 4 figure

    Inverse-Designed Spectrum Splitters for Color Imaging

    Full text link
    Absorptive filters provide color discrimination in image sensors by eliminating 70% of incident light. Instead, we present a dielectric scatterer that efficiently sorts light based on color. This may improve the sensitivity and functionality of detectors

    Inverse-Designed Spectrum Splitters for Color Imaging

    Full text link
    Absorptive filters provide color discrimination in image sensors by eliminating 70% of incident light. Instead, we present a dielectric scatterer that efficiently sorts light based on color. This may improve the sensitivity and functionality of detectors
    corecore