72 research outputs found
The status of water and sanitation among Pacific Rim nations
Analysis of relationships among national wealth, access to improved water supply and sanitation facilities, and population health indices suggests that the adequacy of water resources at the national level is a poor predictor of economic development - namely, that low water stress is neither necessary nor sufficient for economic development at the present state of water stress among Pacific Rim nations. Although nations differ dramatically in terms of priority provided to improved water and sanitation, there is some level of wealth (per capita GNP) at which all nations promote the development of essential environmental services. Among the Pacific Rim countries for which there are data, no nation with a per capita GNP < US18,000/person-year, however, there are decided differences in the provision of sanitary services (improved water supply and sanitation) among nations with similar economic success. There is a fairly strong relationship between child mortality/life expectancy and access to improved sanitation, as expected from the experiences of developed nations. Here no attempt is made to produce causal relationships among these data. Failure to meet Millennium Development Goals for the extension of improved sanitation is frequently evident in nations with large rural populations. Under those circumstances, capital intensive water and sanitation facilities are infeasible, and process selection for water/wastewater treatment requires an adaptation to local conditions, the use of appropriate materials, etc., constraints that are mostly absent in the developed world. Exceptions to these general ideas exist in water-stressed parts of developed countries, where water supplies are frequently augmented by water harvesting, water reclamation/reuse, and the desalination of brackish water resources. Each of these processes involves public acceptance of water resources that are at least initially of inferior quality. Despite predictions of looming increases in water stress throughout the world, adaptation and resourcefulness generally allow us to meet water demand while pursuing rational economic development, even in the most water-stressed areas of the Pacific Rim
The On-Site Analysis of the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) observatory will be one of the largest
ground-based very high-energy gamma-ray observatories. The On-Site Analysis
will be the first CTA scientific analysis of data acquired from the array of
telescopes, in both northern and southern sites. The On-Site Analysis will have
two pipelines: the Level-A pipeline (also known as Real-Time Analysis, RTA) and
the level-B one. The RTA performs data quality monitoring and must be able to
issue automated alerts on variable and transient astrophysical sources within
30 seconds from the last acquired Cherenkov event that contributes to the
alert, with a sensitivity not worse than the one achieved by the final pipeline
by more than a factor of 3. The Level-B Analysis has a better sensitivity (not
be worse than the final one by a factor of 2) and the results should be
available within 10 hours from the acquisition of the data: for this reason
this analysis could be performed at the end of an observation or next morning.
The latency (in particular for the RTA) and the sensitivity requirements are
challenging because of the large data rate, a few GByte/s. The remote
connection to the CTA candidate site with a rather limited network bandwidth
makes the issue of the exported data size extremely critical and prevents any
kind of processing in real-time of the data outside the site of the telescopes.
For these reasons the analysis will be performed on-site with infrastructures
co-located with the telescopes, with limited electrical power availability and
with a reduced possibility of human intervention. This means, for example, that
the on-site hardware infrastructure should have low-power consumption. A
substantial effort towards the optimization of high-throughput computing
service is envisioned to provide hardware and software solutions with
high-throughput, low-power consumption at a low-cost.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Pathogen survival trajectories: an eco-environmental approach to the modeling of human campylobacteriosis ecology.
Campylobacteriosis, like many human diseases, has its own ecology in which the propagation of human infection and disease depends on pathogen survival and finding new hosts in order to replicate and sustain the pathogen population. The complexity of this process, a process common to other enteric pathogens, has hampered control efforts. Many unknowns remain, resulting in a poorly understood disease ecology. To provide structure to these unknowns and help direct further research and intervention, we propose an eco-environmental modeling approach for campylobacteriosis. This modeling approach follows the pathogen population as it moves through the environments that define the physical structure of its ecology. In this paper, we term the ecologic processes and environments through which these populations move "pathogen survival trajectories." Although such a modeling approach could have veterinary applications, our emphasis is on human campylobacteriosis and focuses on human exposures to Campylobacter through feces, food, and aquatic environments. The pathogen survival trajectories that lead to human exposure include ecologic filters that limit population size, e.g., cooking food to kill Campylobacter. Environmental factors that influence the size of the pathogen reservoirs include temperature, nutrient availability, and moisture availability during the period of time the pathogen population is moving through the environment between infected and susceptible hosts. We anticipate that the modeling approach proposed here will work symbiotically with traditional epidemiologic and microbiologic research to help guide and evaluate the acquisition of new knowledge about the ecology, eventual intervention, and control of campylobacteriosis
Direct Multipixel Imaging and Spectroscopy of an Exoplant with a Solar Gravity Lens Mission
We report here on the results of our initial study of a mission to the deep outer regions of our solar system, with the primary mission objective of conducting direct megapixel high-resolution imag- ing and spectroscopy of a potentially habitable exoplanet by exploiting the remarkable optical properties of the SGL. Our main goal was not to study how to get there (although this was also addressed), but rather, to investigate what it takes to operate spacecraft at such enormous distances with the needed precision. Specifically, we studied i) how a space mission to the focal region of the SGL may be used to obtain high-resolution direct imaging and spectroscopy of an exoplanet by detecting, tracking, and studying the Einstein ring around the Sun, and ii) how such information could be used to detect signs of life on another planet
Differential physiological changes following internet exposure in higher and lower problematic internet users
Problematic internet use (PIU) has been suggested as in need of further research with a view to being included as a disorder in future Diagnostic and Statistical Manual (DSM) of the American Psychiatric Association, but lack of knowledge about the impact of internet cessation on physiological function remains a major gap in knowledge and a barrier to PIU classification. One hundred and forty-four participants were assessed for physiological (blood pressure and heart rate) and psychological (mood and state anxiety) function before and after an internet session. Individuals also completed a psychometric examination relating to their usage of the internet, as well as their levels of depression and trait anxiety. Individuals who identified themselves as having PIU displayed increases in heart rate and systolic blood pressure, as well as reduced mood and increased state of anxiety, following cessation of internet session. There were no such changes in individuals with no self-reported PIU. These changes were independent of levels of depression and trait anxiety. These changes after cessation of internet use are similar to those seen in individuals who have ceased using sedative or opiate drugs, and suggest PIU deserves further investigation and serious consideration as a disorder
A prototype for the real-time analysis of the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) observatory will be one of the biggest ground-based very-high-energy (VHE) Îł- ray observatory. CTA will achieve a factor of 10 improvement in sensitivity from some tens of GeV to beyond 100 TeV with respect to existing telescopes. The CTA observatory will be capable of issuing alerts on variable and transient sources to maximize the scientific return. To capture these phenomena during their evolution and for effective communication to the astrophysical community, speed is crucial. This requires a system with a reliable automated trigger that can issue alerts immediately upon detection of Îł-ray flares. This will be accomplished by means of a Real-Time Analysis (RTA) pipeline, a key system of the CTA observatory. The latency and sensitivity requirements of the alarm system impose a challenge because of the anticipated large data rate, between 0.5 and 8 GB/s. As a consequence, substantial efforts toward the optimization of highthroughput computing service are envisioned. For these reasons our working group has started the development of a prototype of the Real-Time Analysis pipeline. The main goals of this prototype are to test: (i) a set of frameworks and design patterns useful for the inter-process communication between software processes running on memory; (ii) the sustainability of the foreseen CTA data rate in terms of data throughput with different hardware (e.g. accelerators) and software configurations, (iii) the reuse of nonreal- time algorithms or how much we need to simplify algorithms to be compliant with CTA requirements, (iv) interface issues between the different CTA systems. In this work we focus on goals (i) and (ii)
The relationship between schizotypal personality and internet addiction in university students
The current study assessed the relationship between problematic internet behaviors, as measured by the Internet Addiction Test (IAT), and schizotypal personality traits, measured by the Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE(B)). One hundred participants (aged between 20 and 30) were given a battery of psychometric assessments, including the IAT and O-LIFE(B), as well as measures of depression, and anxiety. Around 30% of the sample displayed responses to the IAT that suggested some problems controlling internet behaviors, and there was no gender difference in these figures. There were associations between both the impulsive nonconformity and introverted anhedonia schizotypal personality traits and problematic internet use, over and above those associated with depression and anxiety. This replicates some previous work that implies that impulsiveness and depression are predictive of behavioral addictions, but places them within a single construct. The findings also support the notion of two groups of users who display problematic internet behaviors - impulsive and depressed individuals
The X-ray Polarization Probe mission concept
The X-ray Polarization Probe (XPP) is a second generation X-ray polarimeter
following up on the Imaging X-ray Polarimetry Explorer (IXPE). The XPP will
offer true broadband polarimetery over the wide 0.2-60 keV bandpass in addition
to imaging polarimetry from 2-8 keV. The extended energy bandpass and
improvements in sensitivity will enable the simultaneous measurement of the
polarization of several emission components. These measurements will give
qualitatively new information about how compact objects work, and will probe
fundamental physics, i.e. strong-field quantum electrodynamics and strong
gravity.Comment: submitted to Astrophysics Decadal Survey as a State of the Profession
white pape
Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas
Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (, , ) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types
The effect of meteorological variables on the transmission of hand, foot and mouth disease in four major cities of Shanxi province, China: a time series data analysis (2009-2013)
Increased incidence of hand, foot and mouth disease (HFMD) has been recognized as a critical challenge to communicable disease control and public health response. This study aimed to quantify the association between climate variation and notified cases of HFMD in selected cities of Shanxi Province, and to provide evidence for disease control and prevention. Meteorological variables and HFMD cases data in 4 major cities (Datong, Taiyuan, Changzhi and Yuncheng) of Shanxi province, China, were obtained from the China Meteorology Administration and China CDC respectively over the period 1 January 2009 to 31 December 2013. Correlations analyses and Seasonal Autoregressive Integrated Moving Average (SARIMA) models were used to identify and quantify the relationship between the meteorological variables and HFMD. HFMD incidence varied seasonally with the majority of cases in the 4 cities occurring from May to July. Temperatures could play important roles in the incidence of HFMD in these regions. The SARIMA models indicate that a 1° C rise in average, maximum and minimum temperatures may lead to a similar relative increase in the number of cases in the 4 cities. The lag times for the effects of temperatures were identified in Taiyuan, Changzhi and Yuncheng. The numbers of cases were positively associated with average and minimum temperatures at a lag of 1 week in Taiyuan, Changzhi and Yuncheng, and with maximum temperature at a lag of 2 weeks in Yuncheng. Positive association between the temperature and HFMD has been identified from the 4 cities in Shanxi Province, although the role of weather variables on the transmission of HFMD varied in the 4 cities. Relevant prevention measures and public health action are required to reduce future risks of climate change with consideration of local climatic conditions.Junni Wei, Alana Hansen, Qiyong Liu, Yehuan Sun, Phil Weinstein, Peng B
- …