6 research outputs found

    Description of the US Army small-scale 2-meter rotor test system

    Get PDF
    A small-scale powered rotor model was designed for use as a research tool in the exploratory testing of rotors and helicopter models. The model, which consists of a 29 hp rotor drive system, a four-blade fully articulated rotor, and a fuselage, was designed to be simple to operate and maintain in wind tunnels of moderate size and complexity. Two six-component strain-gauge balances are used to provide independent measurement of the rotor and fuselage aerodynamic loads. Commercially available standardized hardware and equipment were used to the maximum extent possible, and specialized parts were designed so that they could be fabricated by normal methods without using highly specialized tooling. The model was used in a hover test of three rotors having different planforms and in a forward flight investigation of a 21-percent-scale model of a U.S. Army scout helicopter equipped with a mast-mounted sight

    A teleoperated unmanned rotorcraft flight test technique

    Get PDF
    NASA and the U.S. Army are jointly developing a teleoperated unmanned rotorcraft research platform at the National Aeronautics and Space Administration (NASA) Langley Research Center. This effort is intended to provide the rotorcraft research community an intermediate step between wind tunnel rotorcraft studies and full scale flight testing. The research vehicle is scaled such that it can be operated in the NASA Langley 14- by 22-Foot Subsonic Tunnel or be flown freely at an outside test range. This paper briefly describes the system's requirements and the techniques used to marry the various technologies present in the system to meet these requirements. The paper also discusses the status of the development effort

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    An Organizational Politics Perspective on Intra-firm Competition in Multinational Corporations

    No full text
    corecore