768 research outputs found

    Meson-Baryon Form Factors in Chiral Colour Dielectric Model

    Get PDF
    The renormalised form factors for pseudoscalar meson-baryon coupling are computed in chiral colour dielectric model. This has been done by rearranging the Lippmann-Schwinger series for the meson baryon scattering matrix so that it can be expressed as a baryon pole term with renormalized form factors and baryon masses and the rest of the terms which arise from the crossed diagrams. Thus we are able to obtain an integral equation for the renormalized meson-baryon form factors in terms of the bare form factors as well as an expression for the meson self energy. This integral equation is solved and renormalized meson baryon form factors and renormalized baryon masses are computed. The parameters of the model are adjusted to obtain a best fit to the physical baryon masses. The calculations show that the renormalized form factors are energy-dependent and differ from the bare form factors primarily at momentum transfers smaller than 1 GeV. At nucleon mass, the change in the form factors is about 10% at zero momentum transfer. The computed form factors are soft with the equivalent monopole cut-off mass of about 500 MeV. The renormalized coupling constants are obtained by comparing the chiral colour dielectric model interaction Hamiltonian with the standard form of meson-nucleon interaction Hamiltonian. The ratio of ΔNπ\Delta N\pi and NNπNN\pi coupling constants is found to be about 2.15. This value is very close to the experimental value.Comment: 16 pages, 7 postscript figure

    Three flavour Quark matter in chiral colour dielectric model

    Get PDF
    We investigate the properties of quark matter at finite density and temperature using the nonlinear chiral extension of Colour Dielectric Model (CCM). Assuming that the square of the meson fields devlop non- zero vacuum expectation value, the thermodynamic potential for interacting three flavour matter has been calculated. It is found that and and remain zero in the medium whereas changes in the medium. As a result, uu and dd quark masses decrease monotonically as the temperature and density of the quark matter is increased.In the present model, the deconfinement density and temperature is found to be lower compared to lattice results. We also study the behaviour of pressure and energy density above critical temperature.Comment: Latex file. 5 figures available on request. To appear in Phys. Rev.

    Axial Vector Coupling Constant in Chiral Colour Dielectric Model

    Full text link
    The axial vector coupling constants of the β\beta decay processes of neutron and hyperon are calculated in SU(3) chiral colour dielectric model (CCDM). Using these axial coupling constants of neutron and hyperon, in CCDM we calculate the integrals of the spin dependent structure functions for proton and neutron. Our result is similar to the results obtained by MIT bag and Cloudy bag models.Comment: 9 pages, Latex file, no figure, to appear in Phys. Rev.

    Working Group Report: Heavy-Ion Physics and Quark-Gluon Plasma

    Get PDF
    This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of Quark-Gluon Plasma believed to have created in heavy-ion collisions and in early universe are reported.Comment: 20 pages, 6 eps figures, Heavy-ion physics and QGP activity report in "IX Workshop on High Energy Physics Phenomenology (WHEPP-09)" held in Institute of Physics, Bhubaneswar, India, during January 3-14, 2006. To be published in PRAMANA - Journal of Physics (Indian Academy of Science
    • …
    corecore