93 research outputs found

    Nanocrystalline Pentaerythritoltetranitrate using Sol-Gel Process

    Get PDF
    The secondary explosives developed with reduced particle size tend to be more insensitive for mechanical stimuli and may release energy with faster rate and gaining more importance nowadays. Therefore, aiming to reduce the particle size of one of the popular explosives, viz., pentaerythritoltetranitrate (PETN) to the nanometer range, a method for preparation of nanocrystalline PETN in the silica (SiO2) gel matrix using sol-gel process has been demonstrated. The PETN-SiO2 xerogels were prepared containing PETN content ranging from 50 per cent to 90 per cent (w/w) and the xerogels were characterised using different techniques. An exothermic peak at around 185 oC preceded by an endotherm in thermal analysis accompanied with weight loss in the temperature range from 150 oC to 200 oC   for the xerogel confirmed the presence of PETN in xerogel. Infrared spectra of xerogels showed peaks at around 1285 cm-1 and 1700 cm-1 assigned to O-NO2 and C-O bond representing PETN. Small angle x-ray scattering measurements on xerogels indicated that PETN entered in the pores of silica matrix. Transmission electron microscopy revealed that cystalline PETN    with particle size of around 15 nm dispersed in silica xerogel. The specific surface area for the PETN-SiO2 (90:10) xerogels was found to be 75 m2/g.Defence Science Journal, 2011, 61(6), pp.534-539, DOI:http://dx.doi.org/10.14429/dsj.61.59

    Nickel-Catalyzed Carbon–Carbon Bond-Forming Reactions of Unactivated Tertiary Alkyl Halides: Suzuki Arylations

    Get PDF
    The first Suzuki cross-couplings of unactivated tertiary alkyl electrophiles are described. The method employs a readily accessible catalyst (NiBr[subscript 2]·diglyme/4,4′-di-tert-butyl-2,2′-bipyridine, both commercially available) and represents the initial example of the use of a group 10 catalyst to cross-couple unactivated tertiary electrophiles to form C–C bonds. This approach to the synthesis of all-carbon quaternary carbon centers does not suffer from isomerization of the alkyl group, in contrast with the umpolung strategy for this bond construction (cross-coupling of a tertiary alkylmetal with an aryl electrophile). Preliminary mechanistic studies are consistent with the generation of a radical intermediate along the reaction pathway.National Institute of General Medical Sciences (U.S.) (R01-GM62871)Merck Research Laboratories (Summer Fellowship

    Abrasive water jet drilling of advanced sustainable bio-fibre-reinforced polymer/hybrid composites : a comprehensive analysis of machining-induced damage responses

    Get PDF
    This paper aims at investigating the effects of variable traverse speeds on machining-induced damage of fibre-reinforced composites, using the abrasive water jet (AWJ) drilling. Three different types of epoxy-based composites laminates fabricated by vacuum bagging technique containing unidirectional (UD) flax, hybrid carbon-flax and carbon fibre-reinforced composite were used. The drilling parameters used were traverse speeds of 20, 40, 60 and 80 mm/min, constant water jet pressure of 300 MPa and a hole diameter of 10 mm. The results obtained depict that the traverse speed had a significant effect with respect to both surface roughness and delamination drilling-induced damage responses. Evidently, an increase in water jet traverse speed caused an increase in both damage responses of the three samples. Significantly, the CFRP composite sample recorded the lowest surface roughness damage response, followed by C-FFRP, while FFRP exhibited the highest. However, samples of FFRP and hybrid C-FFRP recorded lowest and highest delamination damage responses, respectively. The discrepancy in both damage responses, as further validated with micrographs of colour video microscopy (CVM), scanning electron microscopy (SEM) and X-ray micro-computed tomography (X-ray μCT), is attributed to the different mechanical properties of the reinforced fibres, fibre orientation/ply stacking and hybridisation of the samples.Peer reviewe

    Development of a simple electroless method for depositing metallic Pt-Pd nanoparticles over wire gauge support for removal of hydrogen in a nuclear reactor

    Get PDF
    Electroless noble metal deposition on the conducting substrate is widely used to obtain the desired film or coating on the substrate of interest. Wire-gauge-based Pt/Pd/Pt-Pd (individually, sequentially, and simultaneously deposited) catalysts have been developed using formaldehyde and sodium formate as reducing agents. Various surface pretreatment methods like SnCl2 + PdCl2 seeding, oxalic acid etching, and HCl activation (etching) have been employed to obtain the desired noble metal coating. Minimum time duration was observed for simultaneously deposited catalysts using formaldehyde as a reducing agent. Prepared catalysts were characterized for noble metal deposition, coating kinetics, surface morphology, and binding energy. The catalyst was found to be active for H2 and O2 recombination reactions for hydrogen mitigation applications in nuclear reactors

    FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry

    Get PDF
    © 2017 Nature America, Inc., part of Springer Nature. All rights reserved.High-mass-resolution imaging mass spectrometry promises to localize hundreds of metabolites in tissues, cell cultures, and agar plates with cellular resolution, but it is hampered by the lack of bioinformatics tools for automated metabolite identification. We report pySM, a framework for false discovery rate (FDR)-controlled metabolite annotation at the level of the molecular sum formula, for high-mass-resolution imaging mass spectrometry (https://github.com/alexandrovteam/pySM). We introduce a metabolite-signal match score and a target-decoy FDR estimate for spatial metabolomics

    Catalytic Enantioselective Cross-Couplings of Secondary Alkyl Electrophiles with Secondary Alkylmetal Nucleophiles: Negishi Reactions of Racemic Benzylic Bromides with Achiral Alkylzinc Reagents

    Get PDF
    We have developed a nickel-catalyzed method for the asymmetric cross-coupling of secondary electrophiles with secondary nucleophiles, specifically, stereoconvergent Negishi reactions of racemic benzylic bromides with achiral cycloalkylzinc reagents. In contrast to most previous studies of enantioselective Negishi cross-couplings, tridentate pybox ligands are ineffective in this process; however, a new, readily available bidentate isoquinoline–oxazoline ligand furnishes excellent ee’s and good yields. The use of acyclic alkylzinc reagents as coupling partners led to the discovery of a highly unusual isomerization that generates a significant quantity of a branched cross-coupling product from an unbranched nucleophile

    Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking

    Get PDF
    The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data

    High temperature crystallographic and thermodynamic investigations on synthetic calzirtite (Ca<SUB>2</SUB>Zr<SUB>5</SUB>Ti<SUB>2</SUB>O<SUB>16</SUB>)

    No full text
    In the context of formation and stability of synthetic rock (SYNROC), studies on crystal structure and thermodynamic parameters of a mineral analogous material, namely calzirtite has been undertaken. The ambient temperature structural studies revealed a tetragonal (I41/acd) fluorite related super-structure with about 5% intermixing of Ti and Zr sites for calzirtite. High temperature structural studies indicated the retention of tetragonal structure of calzirtite up to 1673 K. The average axial thermal expansion coefficient of calzirtite between 297 and 1473 K is found to be 12.7 × 10−6/K for a-axis and 9.2 × 10−6/K along the c-axis. The thermodynamic parameters of calzirtite have been determined employing high temperature solution calorimetry. The standard molar enthalpy of formation of Ca2Zr5Ti2O16(s) at 298 K is found to be −8964.16 ± 12.59 kJ mol−1. The isobaric heat capacity of the compound has been derived from the enthalpy increment (HT-H298) data measured by drop calorimetric technique. Based on the experimental results thermodynamic functions like C0p,m, S0m, H0, G0, (G0T-H0298)/T, &#916;fH0298 and &#916;fG0T for calzirtite (Ca2Zr5Ti2O16,s) has been generated
    • …
    corecore