7 research outputs found

    Assessing dengue transmission risk and a vector control intervention using entomological and immunological indices in Thailand : study protocol for a cluster-randomized controlled trial [+ Correction 2018, vol. 19, p. 703]

    No full text
    Background: Dengue fever is the most common and widespread mosquito-borne arboviral disease in the world. There is a compelling need for cost-effective approaches and practical tools that can reliably measure real-time dengue transmission dynamics that enable more accurate and useful predictions of incidence and outbreaks. Sensitive surveillance tools do not exist today, and only a small handful of new control strategies are available. Vector control remains at the forefront for combating dengue transmission. However, the effectiveness of many current vector control interventions is fraught with inherent weaknesses. No single vector control method is effective enough to control both vector populations and disease transmission. Evaluations of novel larval and adult control interventions are needed. Methods/design: A cluster-randomized controlled trial will be carried out between 2017 and 2019 in urban community clusters in Khon Kaen and Roi Et cities, northeastern Thailand. The effectiveness of a pyriproxyfen/spinosad combination treatment of permanent water storage containers will be evaluated on epidemiological and entomological outcomes, including dengue incidence, number of female adult dengue vectors infected or not infected with dengue virus (DENV), human exposure to Aedes mosquito bites, and several other indices. These indices will also be used to develop predictive models for dengue transmission and impending outbreaks. Epidemiological and entomological data will be collected continuously for 2 years, with the intervention implemented after 1 year. Discussion: The aims of the trial are to simultaneously evaluate the efficacy of an innovative dengue vector control intervention and developing predictive dengue models. Assessment of human exposure to mosquito bites by detecting antibodies generated against Aedes saliva proteins in human blood samples has, so far, not been applied in dengue epidemiological risk assessment and disease surveillance methodologies. Likewise, DENV detection in mosquitoes (adult and immature stages) has not been used in any practical way for routine disease surveillance strategies. The integration of multiple outcome measures will assist health authorities to better predict outbreaks for planning and applying focal and timely interventions. The trial outcomes will not only be important for Thailand, but also for the entire Southeast Asian region and further afield

    Assessing dengue transmission risk and a vector control intervention using entomological and immunological indices in Thailand : study protocol for a cluster-randomized controlled trial

    No full text
    Background: Dengue fever is the most common and widespread mosquito-borne arboviral disease in the world. There is a compelling need for cost-effective approaches and practical tools that can reliably measure real-time dengue transmission dynamics that enable more accurate and useful predictions of incidence and outbreaks. Sensitive surveillance tools do not exist today, and only a small handful of new control strategies are available. Vector control remains at the forefront for combating dengue transmission. However, the effectiveness of many current vector control interventions is fraught with inherent weaknesses. No single vector control method is effective enough to control both vector populations and disease transmission. Evaluations of novel larval and adult control interventions are needed. Methods/design: A cluster-randomized controlled trial will be carried out between 2017 and 2019 in urban community clusters in Khon Kaen and Roi Et cities, northeastern Thailand. The effectiveness of a pyriproxyfen/spinosad combination treatment of permanent water storage containers will be evaluated on epidemiological and entomological outcomes, including dengue incidence, number of female adult dengue vectors infected or not infected with dengue virus (DENV), human exposure to Aedes mosquito bites, and several other indices. These indices will also be used to develop predictive models for dengue transmission and impending outbreaks. Epidemiological and entomological data will be collected continuously for 2 years, with the intervention implemented after 1 year. Discussion: The aims of the trial are to simultaneously evaluate the efficacy of an innovative dengue vector control intervention and developing predictive dengue models. Assessment of human exposure to mosquito bites by detecting antibodies generated against Aedes saliva proteins in human blood samples has, so far, not been applied in dengue epidemiological risk assessment and disease surveillance methodologies. Likewise, DENV detection in mosquitoes (adult and immature stages) has not been used in any practical way for routine disease surveillance strategies. The integration of multiple outcome measures will assist health authorities to better predict outbreaks for planning and applying focal and timely interventions. The trial outcomes will not only be important for Thailand, but also for the entire Southeast Asian region and further afield

    Systematic review of the role of angiopoietin-1 and angiopoietin-2 in Plasmodium species infections: biomarkers or therapeutic targets?

    Get PDF
    Background: Levels of both angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) correlate with malaria disease severity and are proposed as biomarkers and possible therapeutic targets. To establish their role in malaria, a systematic review was performed of the literature on Ang-1 and Ang-2 with regard to their potential as biomarkers in malaria and discuss their possible place in adjuvant treatment regimens. Methods: Ten electronic databases were systematically searched to identify studies investigating Ang-1 and Ang-2 in human and murine malaria in both clinical and experimental settings. Information about the predictive value of Ang-1 and Ang-2 for disease severity and their regulatory changes in interventional studies were extracted. Results: Some 579 studies were screened; 26 were included for analysis. In all five studies that determined Ang-1 levels and in all 11 studies that determined Ang-2 in different disease severity states in falciparum malaria, a decline in Ang-1 and an increase of Ang-2 levels was associated with increasing disease severity. All nine studies that determined angiopoietin levels in Plasmodium falciparum patients to study their ability as biomarkers could distinguish between multiple disease severity states; the more the disease severity states differed, the better they could be distinguished. Five studies different
    corecore