955 research outputs found

    Linear Convergence of the Douglas-Rachford Method for Two Closed Sets

    Full text link
    In this paper, we investigate the Douglas-Rachford method for two closed (possibly nonconvex) sets in Euclidean spaces. We show that under certain regularity conditions, the Douglas-Rachford method converges locally with R-linear rate. In convex settings, we prove that the linear convergence is global. Our study recovers recent results on the same topic

    Tangential Extremal Principles for Finite and Infinite Systems of Sets, I: Basic Theory

    Get PDF
    In this paper we develop new extremal principles in variational analysis that deal with finite and infinite systems of convex and nonconvex sets. The results obtained, unified under the name of tangential extremal principles, combine primal and dual approaches to the study of variational systems being in fact first extremal principles applied to infinite systems of sets. The first part of the paper concerns the basic theory of tangential extremal principles while the second part presents applications to problems of semi-infinite programming and multiobjective optimization

    Tangential Extremal Principles for Finite and Infinite Systems of Sets, II: Applications to Semi-infinite and Multiobjective Optimization

    Get PDF
    This paper contains selected applications of the new tangential extremal principles and related results developed in Part I to calculus rules for infinite intersections of sets and optimality conditions for problems of semi-infinite programming and multiobjective optimization with countable constraint

    Rated Extremal Principles for Finite and Infinite Systems

    Get PDF
    In this paper we introduce new notions of local extremality for finite and infinite systems of closed sets and establish the corresponding extremal principles for them called here rated extremal principles. These developments are in the core geometric theory of variational analysis. We present their applications to calculus and optimality conditions for problems with infinitely many constraints
    corecore