8,142 research outputs found

    Fractional excitations in the Luttinger liquid

    Full text link
    We reconsider the spectrum of the Luttinger liquid (LL) usually understood in terms of phonons (density fluctuations), and within the context of bosonization we give an alternative representation in terms of fractional states. This allows to make contact with Bethe Ansatz which predicts similar fractional states. As an example we study the spinon operator in the absence of spin rotational invariance and derive it from first principles: we find that it is not a semion in general; a trial Jastrow wavefunction is also given for that spinon state. Our construction of the new spectroscopy based on fractional states leads to several new physical insights: in the low-energy limit, we find that the Sz=0S_{z}=0 continuum of gapless spin chains is due to pairs of fractional quasiparticle-quasihole states which are the 1D counterpart of the Laughlin FQHE quasiparticles. The holon operator for the Luttinger liquid with spin is also derived. In the presence of a magnetic field, spin-charge separation is not realized any longer in a LL: the holon and the spinon are then replaced by new fractional states which we are able to describe.Comment: Revised version to appear in Physical Review B. 27 pages, 5 figures. Expands cond-mat/9905020 (Eur.Phys.Journ.B 9, 573 (1999)

    Atmospheric Pressure Chemical Vapor Deposition of Graphene

    Get PDF
    Recently, graphene has gained significant interest owing to its outstanding conductivity, mechanical strength, thermal stability, etc. Among various graphene synthesis methods, atmospheric pressure chemical vapor deposition (APCVD) is one of the best syntheses due to very low diffusivity coefficient and a critical step for graphene-based device fabrication. High-temperature APCVD processes for thin film productions are being recognized in many diversity technologies such as solid state electronic devices, in particular, high quality epitaxial semiconductor films for silicon bipolar and metal oxide semiconductor (MOS) transistors. Graphene-based devices exhibit high potential for applications in flexible electronics, optoelectronics, and energy harvesting. In this chapter, recent advances of APCVD-based graphene synthesis and their related applications will be addressed
    • …
    corecore