329 research outputs found
The Self-Organization of Interaction Networks for Nature-Inspired Optimization
Over the last decade, significant progress has been made in understanding
complex biological systems, however there have been few attempts at
incorporating this knowledge into nature inspired optimization algorithms. In
this paper, we present a first attempt at incorporating some of the basic
structural properties of complex biological systems which are believed to be
necessary preconditions for system qualities such as robustness. In particular,
we focus on two important conditions missing in Evolutionary Algorithm
populations; a self-organized definition of locality and interaction epistasis.
We demonstrate that these two features, when combined, provide algorithm
behaviors not observed in the canonical Evolutionary Algorithm or in
Evolutionary Algorithms with structured populations such as the Cellular
Genetic Algorithm. The most noticeable change in algorithm behavior is an
unprecedented capacity for sustainable coexistence of genetically distinct
individuals within a single population. This capacity for sustained genetic
diversity is not imposed on the population but instead emerges as a natural
consequence of the dynamics of the system
Use of statistical outlier detection method in adaptive evolutionary algorithms
In this paper, the issue of adapting probabilities for Evolutionary Algorithm
(EA) search operators is revisited. A framework is devised for distinguishing
between measurements of performance and the interpretation of those
measurements for purposes of adaptation. Several examples of measurements and
statistical interpretations are provided. Probability value adaptation is
tested using an EA with 10 search operators against 10 test problems with
results indicating that both the type of measurement and its statistical
interpretation play significant roles in EA performance. We also find that
selecting operators based on the prevalence of outliers rather than on average
performance is able to provide considerable improvements to adaptive methods
and soundly outperforms the non-adaptive case
Credit Assignment in Adaptive Evolutionary Algorithms
In this paper, a new method for assigning credit to search\ud
operators is presented. Starting with the principle of optimizing\ud
search bias, search operators are selected based on an ability to\ud
create solutions that are historically linked to future generations.\ud
Using a novel framework for defining performance\ud
measurements, distributing credit for performance, and the\ud
statistical interpretation of this credit, a new adaptive method is\ud
developed and shown to outperform a variety of adaptive and\ud
non-adaptive competitors
The Self-Organization of Interaction Networks for Nature-Inspired Optimization
Over the last decade, significant progress has been made in understanding complex biological systems, however there have been few attempts at incorporating this knowledge into nature inspired optimization algorithms. In this paper, we present a first attempt at incorporating some of the basic structural properties of complex biological systems which are believed to be necessary preconditions for system qualities such as robustness. In particular, we focus on two important conditions missing in Evolutionary Algorithm populations; a self-organized definition of locality and interaction epistasis. We demonstrate that these two features, when combined, provide algorithm behaviors not observed in the canonical Evolutionary Algorithm or in Evolutionary Algorithms with structured populations such as the Cellular Genetic Algorithm. The most noticeable change in algorithm behavior is an unprecedented capacity for sustainable coexistence of genetically distinct individuals within a single population. This capacity for sustained genetic diversity is not imposed on the population but instead emerges as a natural consequence of the dynamics of the system
Making and breaking power laws in evolutionary algorithm population dynamics
Deepening our understanding of the characteristics and behaviors of population-based search algorithms remains an important ongoing challenge in Evolutionary Computation. To date however, most studies of Evolutionary Algorithms have only been able to take place within tightly restricted experimental conditions. For instance, many analytical methods can only be applied to canonical algorithmic forms or can only evaluate evolution over simple test functions. Analysis of EA behavior under more complex conditions is needed to broaden our understanding of this population-based search process. This paper presents an approach to analyzing EA behavior that can be applied to a diverse range of algorithm designs and environmental conditions. The approach is based on evaluating an individual’s impact on population dynamics using metrics derived from genealogical graphs.\ud
From experiments conducted over a broad range of conditions, some important conclusions are drawn in this study. First, it is determined that very few individuals in an EA population have a significant influence on future population dynamics with the impact size fitting a power law distribution. The power law distribution indicates there is a non-negligible probability that single individuals will dominate the entire population, irrespective of population size. Two EA design features are however found to cause strong changes to this aspect of EA behavior: i) the population topology and ii) the introduction of completely new individuals. If the EA population topology has a long path length or if new (i.e. historically uncoupled) individuals are continually inserted into the population, then power law deviations are observed for large impact sizes. It is concluded that such EA designs can not be dominated by a small number of individuals and hence should theoretically be capable of exhibiting higher degrees of parallel search behavior
Use of Statistical Outlier Detection Method in Adaptive\ud Evolutionary Algorithms
In this paper, the issue of adapting probabilities for Evolutionary Algorithm (EA) search operators is revisited. A framework is devised for distinguishing between measurements of performance and the interpretation of those measurements for purposes of adaptation. Several examples of measurements and statistical interpretations are provided. Probability value adaptation is tested using an EA with 10 search operators against 10 test problems with results indicating that both the type of measurement and its statistical interpretation play significant roles in EA performance. We also find that selecting operators based on the prevalence of outliers rather than on average performance is able to provide considerable improvements to\ud
adaptive methods and soundly outperforms the non-adaptive\ud
case
Stability investigations of isotropic and anisotropic exponential inflation in the Starobinsky-Bel-Robinson gravity
In this paper, we would like to examine whether a novel
Starobinsky-Bel-Robinson gravity model admits stable exponential inflationary
solutions with or without spatial anisotropies. As a result, we are able to
derive an exact de Sitter inflationary to this Starobinsky-Bel-Robinson model.
Furthermore, we observe that an exact Bianchi type I inflationary solution does
not exist in the Starobinsky-Bel-Robinson model. However, we find that a
modified Starobinsky-Bel-Robinson model, in which the sign of coefficient of
term is flipped from positive to negative, can admit the corresponding
Bianchi type I inflationary solution. Unfortunately, stability analysis using
the dynamical system approach indicates that both of these inflationary
solutions turn out to be unstable. Interestingly, we show that a stable de
Sitter inflationary solution can be obtained in the modified
Starobinsky-Bel-Robinson gravity.Comment: 26 pages, 2 figures. V2 with the abstract revised to improve its
clarity, some relevant references added, and some typos fixed. All main
calculations and conclusions remain unchanged. Comments are welcom
- …