8,337 research outputs found

    Emerging insights on intestinal dysbiosis during bacterial infections

    Get PDF
    Infection of the gastrointestinal tract is commonly linked to pathological imbalances of the resident microbiota, termed dysbiosis. In recent years, advanced high-throughput genomic approaches have allowed us to examine the microbiota in an unprecedented manner, revealing novel biological insights about infection-associated dysbiosis at the community and individual species levels. A dysbiotic microbiota is typically reduced in taxonomic diversity and metabolic function, and can harbour pathobionts that exacerbate intestinal inflammation or manifest systemic disease. Dysbiosis can also promote pathogen genome evolution, while allowing the pathogens to persist at high density and transmit to new hosts. A deeper understanding of bacterial pathogenicity in the context of the intestinal microbiota should unveil new approaches for developing diagnostics and therapies for enteropathogens

    ηc\eta_c mixing effects on charmonium and BB meson decays

    Full text link
    We include the ηc\eta_c meson into the η\eta-η′\eta'-GG mixing formalism constructed in our previous work, where GG represents the pseudoscalar gluball. The mixing angles in this tetramixing matrix are constrained by theoretical and experimental implications from relevant hadronic processes. Especially, the angle between ηc\eta_c and GG is found to be about 11∘11^\circ from the measured decay widths of the ηc\eta_c meson. The pseudoscalar glueball mass mGm_G, the pseudoscalar densities mqq,ss,ccm_{qq,ss,cc} and the U(1) anomaly matrix elements associated with the mixed states are solved from the anomalous Ward identities. The solution mG≈1.4m_G\approx 1.4 GeV obtained from the η\eta-η′\eta'-GG mixing is confirmed, while mqqm_{qq} grows to above the pion mass, and thus increases perturbative QCD predictions for the branching ratios Br(B→η′K)Br(B\to\eta'K). We then analyze the ηc\eta_c-mixing effects on charmonium magnetic dipole transitions, and on the B→η(′)KSB\to\eta^{(\prime)}K_S branching ratios and CP asymmetries, which further improve the consistency between theoretical predictions and data. A predominant observation is that the ηc\eta_c mixing enhances the perturbative QCD predictions for Br(B→η′K)Br(B\to\eta'K) by 18%, but does not alter those for Br(B→ηK)Br(B\to\eta K). The puzzle due to the large Br(B→η′K)Br(B\to\eta'K) data is then resolved.Comment: 12 pages, version to appear in PR

    Spectral Theory for Non-linear Superconducting Microwave Systems: Extracting Relaxation Rates and Mode Hybridization

    Full text link
    The accurate modeling of mode hybridization and calculation of radiative relaxation rates have been crucial to the design and optimization of superconducting quantum devices. In this work, we introduce a spectral theory for the electrohydrodynamics of superconductors that enables the extraction of the relaxation rates of excitations in a general three-dimensional distribution of superconducting bodies. Our approach addresses the long-standing problem of formulating a modal description of open systems that is both efficient and allows for second quantization of the radiative hybridized fields. This is achieved through the implementation of finite but transparent boundaries through which radiation can propagate into and out of the computational domain. The resulting spectral problem is defined within a coarse-grained formulation of the electrohydrodynamical equations that is suitable for the analysis of the non-equilibrium dynamics of multiscale superconducting quantum systems.Comment: 21 pages, 12 figures, journal pape

    Wave-current interactions in marine current turbines

    Get PDF
    The influence of waves on the dynamic properties of bending moments at the root of blades of tidal stream vertical-axis rotors is reported. Blade element-momentum theory for wind turbines is combined with linear wave theory and used to analyze this influence. Experiments were carried out with a 350 mm diameter rotor to validate the simulation and the comparison shows the ability of the theoretical approach to predict the blade root bending moments. It can be concluded that, in steep waves, linear theory underestimates the dynamic behaviour of bending moments. However, in long waves, linear theory works well. Bending moments at roots of rotor blades fluctuate with significant amplitudes (as much as 50 per cent of mean value for out-of-plane bending moment and 100 per cent of mean value for in-plane bending moment), which will be important for design of tidal stream rotors
    • …
    corecore