132 research outputs found
An FPGA-based Convolution IP Core for Deep Neural Networks Acceleration
The development of machine learning has made a revolution in various applications such as object detection, image/video recognition, and semantic segmentation. Neural networks, a class of machine learning, play a crucial role in this process because of their remarkable improvement over traditional algorithms. However, neural networks are now going deeper and cost a significant amount of computation operations. Therefore they usually work ineffectively in edge devices that have limited resources and low performance. In this paper, we research a solution to accelerate the neural network inference phase using FPGA-based platforms. We analyze neural network models, their mathematical operations, and the inference phase in various platforms. We also profile the characteristics that affect the performance of neural network inference. Based on the analysis, we propose an architecture to accelerate the convolution operation used in most neural networks and takes up most of the computations in networks in terms of parallelism, data reuse, and memory management. We conduct different experiments to validate the FPGA-based convolution core architecture as well as to compare performance. Experimental results show that the core is platform-independent. The core outperforms a quad-core ARM processor functioning at 1.2 GHz and a 6-core Intel CPU with speed-ups of up to 15.69× and 2.78×, respectivel
Efficient tracking of team sport players with few game-specific annotations
One of the requirements for team sports analysis is to track and recognize
players. Many tracking and reidentification methods have been proposed in the
context of video surveillance. They show very convincing results when tested on
public datasets such as the MOT challenge. However, the performance of these
methods are not as satisfactory when applied to player tracking. Indeed, in
addition to moving very quickly and often being occluded, the players wear the
same jersey, which makes the task of reidentification very complex. Some recent
tracking methods have been developed more specifically for the team sport
context. Due to the lack of public data, these methods use private datasets
that make impossible a comparison with them. In this paper, we propose a new
generic method to track team sport players during a full game thanks to few
human annotations collected via a semi-interactive system. Non-ambiguous
tracklets and their appearance features are automatically generated with a
detection and a reidentification network both pre-trained on public datasets.
Then an incremental learning mechanism trains a Transformer to classify
identities using few game-specific human annotations. Finally, tracklets are
linked by an association algorithm. We demonstrate the efficiency of our
approach on a challenging rugby sevens dataset. To overcome the lack of public
sports tracking dataset, we publicly release this dataset at
https://kalisteo.cea.fr/index.php/free-resources/. We also show that our method
is able to track rugby sevens players during a full match, if they are
observable at a minimal resolution, with the annotation of only 6 few seconds
length tracklets per player.Comment: Accepted to 2022 8th International Workshop on Computer Vision in
Sports (CVsports 2022
VIBR: Learning View-Invariant Value Functions for Robust Visual Control
End-to-end reinforcement learning on images showed significant progress in
the recent years. Data-based approach leverage data augmentation and domain
randomization while representation learning methods use auxiliary losses to
learn task-relevant features. Yet, reinforcement still struggles in visually
diverse environments full of distractions and spurious noise. In this work, we
tackle the problem of robust visual control at its core and present VIBR
(View-Invariant Bellman Residuals), a method that combines multi-view training
and invariant prediction to reduce out-of-distribution (OOD) generalization gap
for RL based visuomotor control. Our model-free approach improve baselines
performances without the need of additional representation learning objectives
and with limited additional computational cost. We show that VIBR outperforms
existing methods on complex visuo-motor control environment with high visual
perturbation. Our approach achieves state-of the-art results on the Distracting
Control Suite benchmark, a challenging benchmark still not solved by current
methods, where we evaluate the robustness to a number of visual perturbators,
as well as OOD generalization and extrapolation capabilities
The Satisfaction of Corporate Customer at Agribank in Ho Chi Minh City
In this paper, the authors use analytical method of explore factor analysis to determining factors that are components of the corporate customer satisfaction in Ho Chi Minh City (HCMC). This paper conducted during the period from March 2012 to December 2014. The exploratory factor analysis result showed that there were five factors, which included of factors following the service behavior, the tangible and the competitive price, the reliance, the convenience and the Agribank Image that are components of the corporate customer satisfaction with significance level 5 %. In addition, the research result processed from SPSS 20.0 software. The research result showed that there were nearly 550 corporates of Agribank in HCMC interviewed but 503 corporates (47 samples mistaken) to be processed and answered about 30 questions. The researcher had analyzed KMO test. The corporate responses measured through an adapted questionnaire on a 5-point Likert scale. Hard copy and interview the corporate by questionnaire distributed among corporate of Agribank in HCMC. At the same time, the result was also a scientific evidence and important for researchers, and policy makers who apply them for improving the corporate customer satisfaction in HCMC. The researchers had obtained the main objectives of this study were to: 1. The first objective, the authors had to conduct a survey to find factors that are components of the corporate customer satisfaction of Agribank in HCMC. 2. The second objective, the authors had to identify some factors that are components in the corporate customer satisfaction in HCMC
Détection hiérarchique multi-classes d'objets dans les images
National audienceNous présentons une méthode de détection multi-classes qui regroupe différentes classes d'objets dans une hiérarchie pour améliorer le score de détections. Pour parcourir l'arbre, nous proposons d'utiliser un algorithme de recherche efficace permettant de trouver le plus court chemin
Détection et localisation d'objets stationnaires par une paire de caméras PTZ
Session "Articles"National audienceDans ce papier, nous proposons une approche originale pour détecter et localiser des objets stationnaires sur une scène étendue en exploitant une paire de caméras PTZ. Nous proposons deux contributions principales. Tout d'abord, nous présentons une méthode de détection et de segmentation d'objets stationnaires. Celle-ci est basée sur la réidentification de descripteurs de l'avant-plan et une segmentation de ces blobs en objets à l'aide de champs de Markov. La seconde contribution concerne la mise en correspondance entre les deux PTZ des silhouettes d'objets détectées dans chaque image
Apprentissage hiérarchique simultané pour la détection efficace d'objets
National audienceDans cet article, nous présentons une nouvelle approche de détection multi-classes basée sur un parcours hiérarchique de classifieurs appris simultanément. Pour plus de robustesse et de rapidité, nous proposons d'utiliser un arbre de classes d'objets. Notre modèle de détection est appris en combinant les contraintes de tri et de classification dans un seul problème d'optimisation. Notre formulation convexe permet d'utiliser un algorithme de recherche pour accélérer le temps d'exécution. Nous avons mené des évaluations de notre algorithme sur les benchmarks PASCAL VOC (2007 et 2010). Comparé à l'approche un contre-tous, notre méthode améliore les performances pour 20 classes et gagne 10x en vitesse
Méthode d'apprentissage pour la classification à partir d'exemples positifs
National audienceCet article présente une méthode d'apprentissage générique et non supervisée à partir d'une seule base d'exemple positif, pour la classification. Le système est formalisé dans un cadre probabiliste. Nous proposons une méthode originale pour approximer la densité de probabilité de la fonction de vraisemblance correspondant aux évènements dit normaux, en utilisant un modèle parcimonieux basé sur des fonctions noyaux. Ce modèle présente l'avantage des méthodes non-paramétriques tout en limitant le coût algorithmique souvent important qui leur est lié. La classification est ensuite effectuée à partir de cette approximation grâce à une notion de confiance. La méthode sera comparée à celle des One Class SVM et testée dans le cas de la détection d'événements rares liés au trafic routier
- …