54 research outputs found

    The key parameters that govern translation efficiency

    Full text link
    Translation of mRNA into protein is a fundamental yet complex biological process with multiple factors that can potentially affect its efficiency. Here, we study a stochastic model describing the traffic flow of ribosomes along the mRNA (namely, the inhomogeneous \ell-TASEP), and identify the key parameters that govern the overall rate of protein synthesis, sensitivity to initiation rate changes, and efficiency of ribosome usage. By analyzing a continuum limit of the model, we obtain closed-form expressions for stationary currents and ribosomal densities, which agree well with Monte Carlo simulations. Furthermore, we completely characterize the phase transitions in the system, and by applying our theoretical results, we formulate design principles that detail how to tune the key parameters we identified to optimize translation efficiency. Using ribosome profiling data from S. cerevisiae, we shows that its translation system is generally consistent with these principles. Our theoretical results have implications for evolutionary biology, as well as synthetic biology.Comment: To appear in Cell Systems. 32 pages, 10 figures, 1 tabl

    Dynamic Interaction of USP14 with the Chaperone HSC70 Mediates Crosstalk between the Proteasome, ER Signaling, and Autophagy

    Get PDF
    USP14 is a deubiquitinating enzyme associated with the proteasome that is important for protein degradation. Here we show that upon proteasomal inhibition or expression of the mutant W58A38 USP14, association of USP14 with the 19S regulatory particle is disrupted. MS-based interactomics revealed an interaction of USP14 with the chaperone, HSC70 in neuroblastoma cells. Proteasome inhibition enhanced binding of USP14 to HSC70, but also to XBP1u and IRE1α proteins, demonstrating a role in the unfolded protein response. Striatal neurons expressing mutant huntingtin exhibited reduced USP14 and HSC70 levels, whilst inhibition of HSC70 downregulated USP14. Furthermore, proteasome inhibition or the use of mutant W58A-USP14 facilitated the interaction of USP14 with the autophagy protein, GABARAP. Functionally, overexpression of W58A-USP14 increased GABARAP positive autophagosomes in striatal neurons and this was abrogated using the HSC70 inhibitor, VER-155008. Modulation of the USP14-HSC70 axis by various drugs may represent a potential therapeutic target in HD to beneficially influence multiple proteostasis pathwaysPeer reviewe

    Peroxisome proliferator-activated receptor-γ coactivator-1α mediates neuroprotection against excitotoxic brain injury in transgenic mice: Role of mitochondria and X-linked inhibitor of apoptosis protein

    Get PDF
    Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1α in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1α in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1α transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomic analyses and immunoblottings. Cultured hippocampal neurons from PGC-1α transgenic mice were more resistant to cell degeneration induced by the glutamate receptor agonist kainic acid. In vivo kainic acid induced excitotoxic cell death in the hippocampus at 48 h in wild-type mice but significantly less so in PGC-1α transgenic mice. However, at later time points cell degeneration was also evident in the transgenic mouse hippocampus, indicating that PGC-1α overexpression can induce a delay in cell death. Immunoblotting showed that X-linked inhibitor of apoptosis protein (XIAP) was increased in PGC-1α transgenic hippocampus with no significant changes in Bcl-2 or Bcl-X. Collectively, these results show that PGC-1α overexpression contributes to enhanced neuronal viability by stimulating mitochondria number and respiration and increasing levels of OXPHOS proteins and the anti-apoptotic protein XIAP

    Assessment of impacts of utilization on water resources in the basin of trans-boundary Red river system

    Get PDF
    The Red river system is the large trans-boundary river system, there has been no united system of hydrology stations as well as integrated plan for the water use and management in the whole basin. The trend of water resources change in the Red river system basin has been assessed on the basic of statistic analyses of data observed during the studies, especially in the time when the exploitation of water resources has been intensified for the multisectoral development. This paper shows some of the results from considerations of the water use in the highlands that is influential in water resources in the Red river system basin and the planned reservoirs which are built in the basin of Red river system. The results include the assessment of the state and trend of water resources in the Red river system basin, the trend of water level lowering in the lowlands and its impacts

    PGC-1 alpha Signaling Increases GABA(A) Receptor Subunit alpha 2 Expression, GABAergic Neurotransmission and Anxiety-Like Behavior in Mice

    Get PDF
    Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) is a master regulator of mitochondria biogenesis and cell stress playing a role in metabolic and degenerative diseases. In the brain PGC-1 alpha expression has been localized mainly to GABAergic interneurons but its overall role is not fully understood. We observed here that the protein levels of gamma-aminobutyric acid (GABA) type A receptor-alpha 2 subunit (GABAR alpha 2) were increased in hippocampus and brain cortex in transgenic (Tg) mice overexpressing PGC-1 alpha in neurons. Along with this, GABAR alpha 2 expression was enhanced in the hippocampus of the PGC-1 alpha Tg mice, as shown by quantitative PCR. Double immunostaining revealed that GABAR alpha 2 co-localized with the synaptic protein gephyrin in higher amounts in the striatum radiatum layer of the hippocampal CA1 region in the Tg compared with Wt mice. Electrophysiology revealed that the frequency of spontaneous and miniature inhibitory postsynaptic currents (mIPSCs) was increased in the CA1 region in the Tg mice, indicative of an augmented GABAergic transmission. Behavioral tests revealed an increase for anxiety-like behavior in the PGC-1 alpha Tg mice compared with controls. To study whether drugs acting on PPAR gamma can affect GABAR alpha 2, we employed pioglitazone that elevated GABAR alpha 2 expression in primary cultured neurons. Similar results were obtained using the specific PPAR gamma agonist, N-(2-benzoylphenyl)-O-[2-(methyl-2-pyridinylamino) ethyl]-L-tyrosine hydrate (GW1929). These results demonstrate that PGC-1 alpha regulates GABAR alpha 2 subunits and GABAergic neurotransmission in the hippocampus with behavioral consequences. This indicates further that drugs like pioglitazone, widely used in the treatment of type 2 diabetes, can influence GABAR alpha 2 expression via the PPAR gamma/PGC-1 alpha system.Peer reviewe

    An evaluation of purified Salmonella Typhi protein antigens for the serological diagnosis of acute typhoid fever.

    Get PDF
    OBJECTIVES: The diagnosis of typhoid fever is a challenge. Aiming to develop a typhoid diagnostic we measured antibody responses against Salmonella Typhi (S. Typhi) protein antigens and the Vi polysaccharide in a cohort of Bangladeshi febrile patients. METHODS: IgM against 12 purified antigens and the Vi polysaccharide was measured by ELISA in plasma from patients with confirmed typhoid fever (n = 32), other confirmed infections (n = 17), and healthy controls (n = 40). ELISAs with the most specific antigens were performed on plasma from 243 patients with undiagnosed febrile disease. RESULTS: IgM against the S. Typhi protein antigens correlated with each other (rho > 0.8), but not against Vi (rho 0.85, respectively. Applying a dynamic cut-off to patients with undiagnosed febrile disease suggested that 34-58% had an IgM response indicative of typhoid. CONCLUSIONS: We evaluated the diagnostic potential of several S. Typhi antigens; our assays give good sensitivity and specificity, but require further assessment in differing patient populations

    Climate change and health in Southeast Asia – defining research priorities and the role of the Wellcome Trust Africa Asia Programmes

    Get PDF
    This article summarises a recent virtual meeting organised by the Oxford University Clinical Research Unit in Vietnam on the topic of climate change and health, bringing local partners, faculty and external collaborators together from across the Wellcome and Oxford networks. Attendees included invited local and global climate scientists, clinicians, modelers, epidemiologists and community engagement practitioners, with a view to setting priorities, identifying synergies and fostering collaborations to help define the regional climate and health research agenda. In this summary paper, we outline the major themes and topics that were identified and what will be needed to take forward this research for the next decade. We aim to take a broad, collaborative approach to including climate science in our current portfolio where it touches on infectious diseases now, and more broadly in our future research directions. We will focus on strengthening our research portfolio on climate-sensitive diseases, and supplement this with high quality data obtained from internal studies and external collaborations, obtained by multiple methods, ranging from traditional epidemiology to innovative technology and artificial intelligence and community-led research. Through timely agenda setting and involvement of local stakeholders, we aim to help support and shape research into global heating and health in the region.</ns4:p

    Climate change and health in Southeast Asia – defining research priorities and the role of the Wellcome Trust Africa Asia Programmes

    Get PDF
    This article summarises a recent virtual meeting organised by the Oxford University Clinical Research Unit in Vietnam on the topic of climate change and health, bringing local partners, faculty and external collaborators together from across the Wellcome and Oxford networks. Attendees included invited local and global climate scientists, clinicians, modelers, epidemiologists and community engagement practitioners, with a view to setting priorities, identifying synergies and fostering collaborations to help define the regional climate and health research agenda. In this summary paper, we outline the major themes and topics that were identified and what will be needed to take forward this research for the next decade. We aim to take a broad, collaborative approach to including climate science in our current portfolio where it touches on infectious diseases now, and more broadly in our future research directions. We will focus on strengthening our research portfolio on climate-sensitive diseases, and supplement this with high quality data obtained from internal studies and external collaborations, obtained by multiple methods, ranging from traditional epidemiology to innovative technology and artificial intelligence and community-led research. Through timely agenda setting and involvement of local stakeholders, we aim to help support and shape research into global heating and health in the region

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
    corecore