5 research outputs found

    Biomarkers of dietary omega-6 fatty acids and incident cardiovascular disease and mortality: an individual-level pooled analysis of 30 cohort studies

    No full text

    Biomarkers of dietary omega-6 fatty acids and incident cardiovascular disease and mortality: an individual-level pooled analysis of 30 cohort studies

    No full text

    Detection and Profiling of Human Coronavirus Immunoglobulins in Critically Ill Coronavirus Disease 2019 Patients

    No full text
    Objectives:. Coronavirus disease 2019 continues to spread worldwide with high levels of morbidity and mortality. We performed anticoronavirus immunoglobulin G profiling of critically ill coronavirus disease 2019 patients to better define their underlying humoral response. Design:. Blood was collected at predetermined ICU days to measure immunoglobulin G with a research multiplex assay against four severe acute respiratory syndrome coronavirus 2 proteins/subunits and against all six additionally known human coronaviruses. Setting:. Tertiary care ICU and academic laboratory. Subjects:. ICU patients suspected of being infected with severe acute respiratory syndrome coronavirus 2 had blood collected until either polymerase chain reaction testing was confirmed negative on ICU day 3 (coronavirus disease 2019 negative) or until death or discharge if the patient tested polymerase chain reaction positive (coronavirus disease 2019 positive). Interventions:. None MEASUREMENTS AND MAIN RESULTS:. Age- and sex-matched healthy controls and ICU patients who were either coronavirus disease 2019 positive or coronavirus disease 2019 negative were enrolled. Cohorts were well-balanced with the exception that coronavirus disease 2019 positive patients had greater body mass indexes, presented with bilateral pneumonias more frequently, and suffered lower Pao2:Fio2 ratios, when compared with coronavirus disease 2019 negative patients (p < 0.05). Mortality rate for coronavirus disease 2019 positive patients was 50%. On ICU days 1–3, anti–severe acute respiratory syndrome coronavirus 2 immunoglobulin G was significantly elevated in coronavirus disease 2019 positive patients, as compared to both healthy control subjects and coronavirus disease 2019 negative patients (p < 0.001). Weak severe acute respiratory syndrome coronavirus immunoglobulin G serologic responses were also detected, but not other coronavirus subtypes. The four anti–severe acute respiratory syndrome coronavirus 2 immunoglobulin G were maximal by ICU day 3, with all four anti–severe acute respiratory syndrome coronavirus 2 immunoglobulin G providing excellent diagnostic potential (severe acute respiratory syndrome coronavirus 2 Spike 1 protein immunoglobulin G, area under the curve 1.0, p < 0.0005; severe acute respiratory syndrome coronavirus receptor binding domain immunoglobulin G, area under the curve, 0.93–1.0; p ≤ 0.0001; severe acute respiratory syndrome coronavirus 2 Spike proteins immunoglobulin G, area under the curve, 1.0; p < 0.0001; severe acute respiratory syndrome coronavirus 2 Nucleocapsid protein immunoglobulin G area under the curve, 0.90–0.95; p ≤ 0.0003). Anti–severe acute respiratory syndrome coronavirus 2 immunoglobulin G increased and/or plateaued over 10 ICU days. Conclusions:. Critically ill coronavirus disease 2019 patients exhibited anti–severe acute respiratory syndrome coronavirus 2 immunoglobulin G, whereas serologic responses to non–severe acute respiratory syndrome coronavirus 2 antigens were weak or absent. Detection of human coronavirus immunoglobulin G against the different immunogenic structural proteins/subunits with multiplex assays may be useful for pathogen identification, patient cohorting, and guiding convalescent plasma therapy

    Enhanced interpretation of newborn screening results without analyte cutoff values

    No full text
    A collaboration among 157 newborn screening programs in 47 countries has lead to the creation of a database of 705,333 discrete analyte concentrations from 11,462 cases affected with 57 metabolic disorders, and from 631 heterozygotes for 12 conditions. This evidence was first applied to establish disease ranges for amino acids and acylcarnitines, and clinically validate 114 cutoff target ranges. Objective: To improve quality and performance with an evidence-based approach, multivariate pattern recognition software has been developed to aid in the interpretation of complex analyte profiles. The software generates tools that convert multiple clinically significant results into a single numerical score based on overlap between normal and disease ranges, penetration within the disease range, differences between specific conditions, and weighted correction factors. Design: Eighty-five on-line tools target either a single condition or the differential diagnosis between two or more conditions. Scores are expressed as a numerical value and as the percentile rank among all cases with the condition chosen as primary target, and are compared to interpretation guidelines. Tools are updated automatically after any new data submission (2009- 2011: 5.2 new cases added per day on average). Main outcome measures: Retrospective evaluation of past cases suggest that these tools could have avoided at least half of 277 false positive outcomes caused by carrier status for fatty acid oxidation disorders, and could have prevented 88% of false negative events caused by cutoff 7 values set inappropriately. In Minnesota, their prospective application has been a major contributing factor to the sustained achievement of a false positive rate below 0.1% and a positive predictive value above 60%. Conclusions: Application of this computational approach to raw data could make cutoff values for single analytes effectively obsolete. This paradigm is not limited to newborn screening and is applicable to the interpretation of diverse multi-analyte profiles utilized in laboratory medicine. Abstract wor

    Impact of Hemoglobin Levels on Composite Cardiac Arrest or Stroke Outcome in Patients With Respiratory Failure Due to COVID-19

    No full text
    OBJECTIVES:. Anemia has been associated with an increased risk of both cardiac arrest and stroke, frequent complications of COVID-19. The effect of hemoglobin level at ICU admission on a composite outcome of cardiac arrest or stroke in an international cohort of COVID-19 patients was investigated. DESIGN:. Retrospective analysis of prospectively collected database. SETTING:. A registry of COVID-19 patients admitted to ICUs at over 370 international sites was reviewed for patients diagnosed with cardiac arrest or stroke up to 30 days after ICU admission. Anemia was defined as: normal (hemoglobin ≥ 12.0 g/dL for women, ≥ 13.5 g/dL for men), mild (hemoglobin 10.0–11.9 g/dL for women, 10.0–13.4 g/dL for men), moderate (hemoglobin ≥ 8.0 and < 10.0 g/dL for women and men), and severe (hemoglobin < 8.0 g/dL for women and men). PATIENTS:. Patients older than 18 years with acute COVID-19 infection in the ICU. INTERVENTIONS:. None. MEASUREMENTS AND MAIN RESULTS:. Of 6926 patients (median age = 59 yr, male = 65%), 760 patients (11.0%) experienced stroke (2.0%) and/or cardiac arrest (9.4%). Cardiac arrest or stroke was more common in patients with low hemoglobin, occurring in 12.8% of patients with normal hemoglobin, 13.3% of patients with mild anemia, and 16.7% of patients with moderate/severe anemia. Time to stroke or cardiac arrest by anemia status was analyzed using Cox proportional hazards regression with death as a competing risk. Covariates selected through clinical knowledge were age, sex, comorbidities (diabetes, hypertension, obesity, and cardiac or neurologic conditions), pandemic era, country income, mechanical ventilation, and extracorporeal membrane oxygenation. Moderate/severe anemia was associated with a higher risk of cardiac arrest or stroke (hazard ratio, 1.32; 95% CI, 1.05–1.67). CONCLUSIONS:. In an international registry of ICU patients with COVID-19, moderate/severe anemia was associated with increased hazard of cardiac arrest or stroke
    corecore