4,912 research outputs found

    Pre-supernova evolution, compact object masses and explosion properties of stripped binary stars

    Full text link
    Most massive stars are born in binary or higher-order multiple systems and exchange mass with a companion during their lives. In particular, the progenitors of a large fraction of compact object mergers, and Galactic neutron stars (NSs) and black holes (BHs) have been stripped off their envelopes by a binary companion. Here, we study the evolution of single and stripped binary stars up to core collapse with the stellar evolution code MESA and their final fates with a parametric supernova (SN) model. We find that stripped binary stars can have systematically different pre-SN structures compared to genuine single stars and thus also different SN outcomes. The bases of these differences are already established by the end of core helium burning and are preserved up to core collapse. We find a non-monotonic pattern of NS and BH formation as a function of CO core mass that is different in single and stripped binary stars. In terms of initial masses, single stars of >35 Msun all form BHs, while this transition is only at 70 Msun in stripped stars. On average, stripped stars give rise to lower NS and BH masses, higher explosion energies, higher kick velocities and higher nickel yields. Within a simplified population synthesis model, we show that our results lead to a significant reduction of the rates of BH-NS and BH-BH mergers with respect to typical assumptions made on NS and BH formation. Therefore, we predict lower detection rates of such merger events by, e.g., advanced LIGO than is often considered. We further show how features in the NS-BH mass distribution of single and stripped stars relate to the chirp-mass distribution of compact object mergers. Further implications of our findings are discussed with respect to the missing red-supergiant problem, a possible mass gap between NSs and BHs, X-ray binaries and observationally inferred nickel masses from Type Ib/c and IIP Sne. [abridged]Comment: 25 pages (incl. appendix), 17 figures, 2 tables; final version accepted for publication in A&

    Understanding star formation in molecular clouds I. Effects of line-of-sight contamination on the column density structure

    Full text link
    Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to determine the column density from dust emission. We use observations and simulations to demonstrate how LOS contamination affects the column density probability distribution function (PDF). We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga, Maddalena, Carina and NGC3603. In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF flattens after correction. All PDFs have a lognormal part for low column densities with a peak at Av~2, a deviation point (DP) from the lognormal at Av(DP)~4-5, and a power-law tail for higher column densities. Assuming a density distribution rho~r^-alpha, the slopes of the power-law tails correspond to alpha(PDF)=1.8, 1.75, and 2.5 for Auriga, Carina, and NGC3603 (alpha~1.5-2 is consistent gravitational collapse). We find that low-mass and high-mass SF clouds display differences in the overall column density structure. Massive clouds assemble more gas in smaller cloud volumes than low-mass SF ones. However, for both cloud types, the transition of the PDF from lognormal shape into power-law tail is found at the same column density (at Av~4-5 mag). Low-mass and high-mass SF clouds then have the same low column density distribution, most likely dominated by supersonic turbulence. At higher column densities, collapse and external pressure can form the power-law tail. The relative importance of the two processes can vary between clouds and thus lead to the observed differences in PDF and column density structure.Comment: A&A accepted, 15.12. 201

    Gravitational lensing in fourth order gravity

    Get PDF
    Gravitational lensing is investigated in the weak field limit of fourth order gravity in which the Lagrangian of the gravitational field is modified by replacing the Ricci scalar curvature R with an analytical expression f(R)f(R). Considering the case of a pointlike lens, we study the behaviour of the deflection angle in the case of power law Lagrangians, i.e. with f(R) = f_0 R^n. In order to investigate possible detectable signatures, the position of the Einstein ring and the solutions of the lens equation are evaluated considering the change with respect to the standard case. Effects on the amplification of the images and the Paczynski curve in microlensing experiments are also estimated.Comment: 10 pages, 3 figures, accepted for publication on Physical Review

    Going from 3D to 1D: A one-dimensional approach to common-envelope evolution

    Full text link
    The common-envelope (CE) phase is a crucial stage in binary star evolution because the orbital separation can shrink drastically while ejecting the envelope of a giant star. Three-dimensional (3D) hydrodynamic simulations of CE evolution are indispensable to learning about the mechanisms that play a role during the CE phase. While these simulations offer great insight, they are computationally expensive. We propose a one-dimensional (1D) model to simulate the CE phase within the stellar evolution code MESA\texttt{MESA} by using a parametric drag force prescription for dynamical drag and adding the released orbital energy as heat into the envelope. We compute CE events of a 0.97M0.97\,\mathrm{M}_\odot asymptotic giant-branch star and a point mass companion with mass ratios of 0.25, 0.50, and 0.75, and compare them to 3D simulations of the same setup. The 1D CE model contains two free parameters, which we demonstrate are both needed to fit the spiral-in behavior and the fraction of ejected envelope mass of the 1D method to the 3D simulations. For mass ratios of 0.25 and 0.50, we find good-fitting 1D simulations, while for a mass ratio of 0.75, we do not find a satisfactory fit to the 3D simulation as some of the assumptions in the 1D method are no longer valid. In all our simulations, we find that the released recombination energy is important to accelerate the envelope and drive the ejection.Comment: Accepted for publication in A&A, 16 pages, 9 figure

    Convective-core overshooting and the final fate of massive stars

    Full text link
    Massive stars can explode in powerful supernovae (SNe) forming neutron stars but they may also collapse directly into black holes (BHs). Understanding and predicting their final fate is increasingly important, e.g, in the context of gravitational-wave astronomy. The interior mixing of stars in general and convective boundary mixing remain some of the largest uncertainties in their evolution. Here, we investigate the influence of convective boundary mixing on the pre-SN structure and explosion properties of massive stars. Using the 1D stellar evolution code Mesa, we model single, non-rotating stars of solar metallicity with initial masses of 570M5-70\mathrm{M_\odot} and convective core step-overshooting of 0.050.50HP0.05-0.50H_\mathrm{P}. Stars are evolved until the onset of iron core collapse, and the pre-SN models are exploded using a parametric, semi-analytic SN code. We use the compactness parameter to describe the interior structure of stars at core collapse. Larger convective core overshooting shifts the location of the compactness peak by 12M1-2\mathrm{M_\odot} to higher MCOM_\mathrm{CO}. As the luminosity of the pre-SN progenitor is determined by MCOM_\mathrm{CO}, we predict BH formation for progenitors with luminosities 5.35<log(L/L)<5.505.35<\log(L/\mathrm{L_\odot})<5.50 and log(L/L)>5.80\log(L/\mathrm{L_\odot})>5.80. The luminosity range of BH formation agrees well with the observed luminosity of the red supergiant star N6946BH1 that disappeared without a bright SN and likely collapsed into a BH. While some of our models in the luminosity range log(L/L)=5.15.5\log(L/\mathrm{L_\odot})=5.1-5.5 indeed collapse to form BHs, this does not fully explain the lack of observed SN~IIP progenitors at these luminosities, ie the missing red-supergiant problem. Convective core overshooting affects the BH masses, the pre-SN location of stars in the Hertzsprung-Russell diagram, the plateau luminosity and duration of SN~IIP lightcurves.[Abridged]Comment: Accepted for publication in Astronomy & Astrophysics: 23 pages, 14 figure

    A multi-scale, multi-wavelength source extraction method: getsources

    Full text link
    We present a multi-scale, multi-wavelength source extraction algorithm called getsources. Although it has been designed primarily for use in the far-infrared surveys of Galactic star-forming regions with Herschel, the method can be applied to many other astronomical images. Instead of the traditional approach of extracting sources in the observed images, the new method analyzes fine spatial decompositions of original images across a wide range of scales and across all wavebands. It cleans those single-scale images of noise and background, and constructs wavelength-independent single-scale detection images that preserve information in both spatial and wavelength dimensions. Sources are detected in the combined detection images by following the evolution of their segmentation masks across all spatial scales. Measurements of the source properties are done in the original background-subtracted images at each wavelength; the background is estimated by interpolation under the source footprints and overlapping sources are deblended in an iterative procedure. In addition to the main catalog of sources, various catalogs and images are produced that aid scientific exploitation of the extraction results. We illustrate the performance of getsources on Herschel images by extracting sources in sub-fields of the Aquila and Rosette star-forming regions. The source extraction code and validation images with a reference extraction catalog are freely available.Comment: 31 pages, 27 figures, to be published in Astronomy & Astrophysic

    The spine of the swan: A Herschel study of the DR21 ridge and filaments in Cygnus X

    Get PDF
    In order to characterise the cloud structures responsible for the formation of high-mass stars, we present Herschel observations of the DR21 environment. Maps of the column density and dust temperature unveil the structure of the DR21 ridge and several connected filaments. The ridge has column densities larger than 1e23/cm^2 over a region of 2.3 pc^2. It shows substructured column density profiles and branching into two major filaments in the north. The masses in the studied filaments range between 130 and 1400 Msun whereas the mass in the ridge is 15000 Msun. The accretion of these filaments onto the DR21 ridge, suggested by a previous molecular line study, could provide a continuous mass inflow to the ridge. In contrast to the striations seen in e.g., the Taurus region, these filaments are gravitationally unstable and form cores and protostars. These cores formed in the filaments potentially fall into the ridge. Both inflow and collisions of cores could be important to drive the observed high-mass star formation. The evolutionary gradient of star formation running from DR21 in the south to the northern branching is traced by decreasing dust temperature. This evolution and the ridge structure can be explained by two main filamentary components of the ridge that merged first in the south.Comment: 8 pages, 5 figures, accepted for publication as a Letter in Astronomy and Astrophysic

    Cluster-formation in the Rosette molecular cloud at the junctions of filaments

    Get PDF
    For many years feedback processes generated by OB-stars in molecular clouds, including expanding ionization fronts, stellar winds, or UV-radiation, have been proposed to trigger subsequent star formation. However, hydrodynamic models including radiation and gravity show that UV-illumination has little or no impact on the global dynamical evolution of the cloud. The Rosette molecular cloud, irradiated by the NGC2244 cluster, is a template region for triggered star-formation, and we investigated its spatial and density structure by applying a curvelet analysis, a filament-tracing algorithm (DisPerSE), and probability density functions (PDFs) on Herschel column density maps, obtained within the HOBYS key program. The analysis reveals not only the filamentary structure of the cloud but also that all known infrared clusters except one lie at junctions of filaments, as predicted by turbulence simulations. The PDFs of sub-regions in the cloud show systematic differences. The two UV-exposed regions have a double-peaked PDF we interprete as caused by shock compression. The deviations of the PDF from the log-normal shape typically associated with low- and high-mass star-forming regions at Av~3-4m and 8-10m, respectively, are found here within the very same cloud. This shows that there is no fundamental difference in the density structure of low- and high-mass star-forming regions. We conclude that star-formation in Rosette - and probably in high-mass star-forming clouds in general - is not globally triggered by the impact of UV-radiation. Moreover, star formation takes place in filaments that arose from the primordial turbulent structure built up during the formation of the cloud. Clusters form at filament mergers, but star formation can be locally induced in the direct interaction zone between an expanding HII--region and the molecular cloud.Comment: A&A Letter, in pres

    Size effect on magnetism of Fe thin films in Fe/Ir superlattices

    Full text link
    In ferromagnetic thin films, the Curie temperature variation with the thickness is always considered as continuous when the thickness is varied from nn to n+1n+1 atomic planes. We show that it is not the case for Fe in Fe/Ir superlattices. For an integer number of atomic planes, a unique magnetic transition is observed by susceptibility measurements, whereas two magnetic transitions are observed for fractional numbers of planes. This behavior is attributed to successive transitions of areas with nn and n+1n+1 atomic planes, for which the TcT_c's are not the same. Indeed, the magnetic correlation length is presumably shorter than the average size of the terraces. Monte carlo simulations are performed to support this explanation.Comment: LaTeX file with Revtex, 5 pages, 5 eps figures, to appear in Phys. Rev. Let
    corecore