84 research outputs found

    Signatures of human regulatory T cells: an encounter with old friends and new players

    Get PDF
    BACKGROUND: Naturally occurring CD4(+)CD25(+ )regulatory T cells (T(Reg)) are involved in the control of autoimmune diseases, transplantation tolerance, and anti-tumor immunity. Thus far, genomic studies on T(Reg )cells were restricted to murine systems, and requirements for their development, maintenance, and mode of action in humans are poorly defined. RESULTS: To improve characterization of human T(Reg )cells, we compiled a unique microarray consisting of 350 T(Reg )cell associated genes (Human T(Reg )Chip) based on whole genome transcription data from human and mouse T(Reg )cells. T(Reg )cell specific gene signatures were created from 11 individual healthy donors. Statistical analysis identified 62 genes differentially expressed in T(Reg )cells, emphasizing some cross-species differences between mice and humans. Among them, several 'old friends' (including FOXP3, CTLA4, and CCR7) that are known to be involved in T(Reg )cell function were recovered. Strikingly, the vast majority of genes identified had not previously been associated with human T(Reg )cells (including LGALS3, TIAF1, and TRAF1). Most of these 'new players' however, have been described in the pathogenesis of autoimmunity. Real-time RT-PCR of selected genes validated our microarray results. Pathway analysis was applied to extract signaling modules underlying human T(Reg )cell function. CONCLUSION: The comprehensive set of genes reported here provides a defined starting point to unravel the unique characteristics of human T(Reg )cells. The Human T(Reg )Chip constructed and validated here is available to the scientific community and is a useful tool with which to study the molecular mechanisms that orchestrate T(Reg )cells under physiologic and diseased conditions

    Nutritional, Health, and Technological Functionality of Lupin Flour Addition to Bread and Other Baked Products: Benefits and Challenges

    Get PDF
    Lupin is an undervalued legume despite its high protein and dietary fiber content and potential health benefits. This review focuses on the nutritional value, health benefits, and technological effects of incorporating lupin flour into wheat-based bread. Results of clinical studies suggest that consuming lupin compared to wheat bread and other baked products reduce chronic disease risk markers; possibly due to increased protein and dietary fiber and bioactive compounds. However, lupin protein allergy has also been recorded. Bread quality has been improved when 10% lupin flour is substituted for refined wheat flour; possibly due to lupin-wheat protein cross-linking assisting bread volume and the high water-binding capacity (WBC) of lupin fiber delaying staling. Above 10% substitution appears to reduce bread quality due to lupin proteins low elasticity and the high WBC of its dietary fiber interrupting gluten network development. Gaps in understanding of the role of lupin flour in bread quality include the optimal formulation and processing conditions to maximize lupin incorporation, role of protein cross-linking, antistaling functionality, and bioactivity of its γ-conglutin protein

    Genotype-Dependent Tumor Regression in Marek’s Disease Mediated at the Level of Tumor Immunity

    Get PDF
    Marek’s disease (MD) of chickens is a unique natural model of Hodgkin’s and Non Hodgkin’s lymphomas in which the neoplastically-transformed cells over-express CD30 (CD30hi) antigen. All chicken genotypes can be infected with MD virus and develop microscopic lymphomas. From 21 days post infection (dpi) microscopic lymphomas regress in resistant chickens but, in contrast, they progress to gross lymphomas in susceptible chickens. Here we test our hypothesis that in resistant chickens at 21 dpi the tissue microenvironment is pro T-helper (Th)-1 and compatible with cytotoxic T lymphocyte (CTL) immunity but in susceptible lines it is pro Th-2 or pro T-regulatory (T-reg) and antagonistic to CTL immunity. We used the B2, non-MHC-associated, MD resistance/susceptibility system (line [L]61/line [L]72) and quantified the levels of key mRNAs that can be used to define Th-1 (IL-2, IL-12, IL-18, IFNγ), Th-2 (IL-4, IL-10) and T-reg (TGFβ, GPR-83, CTLA-4, SMAD-7) lymphocyte phenotypes. We measured gene expression in both whole tissues (represents tissue microenvironment and tumor microenvironment) and in the lymphoma lesions (tumor microenvironment) themselves. Gene ontology-based modeling of our results shows that the dominant phenotype in whole tissue as well as in microscopic lymphoma lesions, is pro T-reg in both L61 and L72 but a minor pro Th-1 and anti Th-2 tissue microenvironment exists in L61 whereas there is an anti Th-1 and pro Th-2 tissue microenvironment in L72. The tumor microenvironment per se is pro T-reg, anti Th-1 and pro Th-2 in both L61 and L72. Together our data suggests that the neoplastic transformation is essentially the same in both L61 and L72 and that resistance/susceptibility is mediated at the level of tumor immunity in the tissues

    Implementation of exon arrays: alternative splicing during T-cell proliferation as determined by whole genome analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The contribution of alternative splicing and isoform expression to cellular response is emerging as an area of considerable interest, and the newly developed exon arrays allow for systematic study of these processes. We use this pilot study to report on the feasibility of exon array implementation looking to replace the 3' <it>in vitro </it>transcription expression arrays in our laboratory.</p> <p>One of the most widely studied models of cellular response is T-cell activation from exogenous stimulation. Microarray studies have contributed to our understanding of key pathways activated during T-cell stimulation. We use this system to examine whole genome transcription and alternate exon usage events that are regulated during lymphocyte proliferation in an attempt to evaluate the exon arrays.</p> <p>Results</p> <p>Peripheral blood mononuclear cells form healthy donors were activated using phytohemagglutinin, IL2 and ionomycin and harvested at 5 points over a 7 day period. Flow cytometry measured cell cycle events and the Affymetrix exon array platform was used to identify the gene expression and alternate exon usage changes. Gene expression changes were noted in a total of 2105 transcripts, and alternate exon usage identified in 472 transcript clusters. There was an overlap of 263 transcripts which showed both differential expression and alternate exon usage over time. Gene ontology enrichment analysis showed a broader range of biological changes in biological processes for the differentially expressed genes, which include cell cycle, cell division, cell proliferation, chromosome segregation, cell death, component organization and biogenesis and metabolic process ontologies. The alternate exon usage ontological enrichments are in metabolism and component organization and biogenesis. We focus on alternate exon usage changes in the transcripts of the spliceosome complex. The real-time PCR validation rates were 86% for transcript expression and 71% for alternate exon usage.</p> <p>Conclusions</p> <p>This study illustrates that the Exon array technology has the potential to provide information on both transcript expression and isoform usage, with very little increase in expense.</p

    TGF-β induces TIAF1 self-aggregation via type II receptor-independent signaling that leads to generation of amyloid β plaques in Alzheimer's disease

    Get PDF
    The role of a small transforming growth factor beta (TGF-β)-induced TIAF1 (TGF-β1-induced antiapoptotic factor) in the pathogenesis of Alzheimer's disease (AD) was investigated. TIAF1 physically interacts with mothers against DPP homolog 4 (Smad4), and blocks SMAD-dependent promoter activation when overexpressed. Accordingly, knockdown of TIAF1 by small interfering RNA resulted in spontaneous accumulation of Smad proteins in the nucleus and activation of the promoter governed by the SMAD complex. TGF-β1 and environmental stress (e.g., alterations in pericellular environment) may induce TIAF1 self-aggregation in a type II TGF-β receptor-independent manner in cells, and Smad4 interrupts the aggregation. Aggregated TIAF1 induces apoptosis in a caspase-dependent manner. By filter retardation assay, TIAF1 aggregates were found in the hippocampi of nondemented humans and AD patients. Total TIAF1-positive samples containing amyloid β (Aβ) aggregates are 17 and 48%, respectively, in the nondemented and AD groups, suggesting that TIAF1 aggregation occurs preceding formation of Aβ. To test this hypothesis, in vitro analysis showed that TGF-β-regulated TIAF1 aggregation leads to dephosphorylation of amyloid precursor protein (APP) at Thr668, followed by degradation and generation of APP intracellular domain (AICD), Aβ and amyloid fibrils. Polymerized TIAF1 physically interacts with amyloid fibrils, which would favorably support plaque formation in vivo

    TIAF1 self-aggregation in peritumor capsule formation, spontaneous activation of SMAD-responsive promoter in p53-deficient environment, and cell death

    Get PDF
    Self-aggregation of transforming growth factor β (TGF-β)1-induced antiapoptotic factor (TIAF1) is known in the nondemented human hippocampus, and the aggregating process may lead to generation of amyloid β (Aβ) for causing neurodegeneration. Here, we determined that overexpressed TIAF1 exhibits as aggregates together with Smad4 and Aβ in the cancer stroma and peritumor capsules of solid tumors. Also, TIAF1/Aβ aggregates are shown on the interface between brain neural cells and the metastatic cancer cell mass. TIAF1 is upregulated in developing tumors, but may disappear in established metastatic cancer cells. Growing neuroblastoma cells on the extracellular matrices from other cancer cell types induced production of aggregated TIAF1 and Aβ. In vitro induction of TIAF1 self-association upregulated the expression of tumor suppressors Smad4 and WW domain-containing oxidoreductase (WOX1 or WWOX), and WOX1 in turn increased the TIAF1 expression. TIAF1/Smad4 interaction further enhanced Aβ formation. TIAF1 is known to suppress SMAD-regulated promoter activation. Intriguingly, without p53, self-aggregating TIAF1 spontaneously activated the SMAD-regulated promoter. TIAF1 was essential for p53-, WOX1- and dominant-negative JNK1-induced cell death. TIAF1, p53 and WOX1 acted synergistically in suppressing anchorage-independent growth, blocking cell migration and causing apoptosis. Together, TIAF1 shows an aggregation-dependent control of tumor progression and metastasis, and regulation of cell death

    SYSGENET: a meeting report from a new European network for systems genetics

    Get PDF
    The first scientific meeting of the newly established European SYSGENET network took place at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, April 7-9, 2010. About 50 researchers working in the field of systems genetics using mouse genetic reference populations (GRP) participated in the meeting and exchanged their results, phenotyping approaches, and data analysis tools for studying systems genetics. In addition, the future of GRP resources and phenotyping in Europe was discussed

    Widening inequalities in self-rated health by material deprivation? A trend analysis between 2001 and 2011 in Germany

    No full text
    Background Research on inequalities in health has shown a strong association between the lack of standard of living (defined as material deprivation) and self-rated health (SRH). In this study, we sought to further examine this association in a trend analysis of relative and absolute inequalities in SRH as defined by material deprivation in Germany. Methods Data were obtained from the German Socio-Economic Panel (GSOEP) between 2001 and 2011. Material deprivation was measured on the basis of 11 living standard items missing due to financial reasons. We used the relative index of inequality (RII) and slope index of inequality (SII) to measure inequalities in SRH by material deprivation, calculating pooled interval logistic regression with robust SEs. Stepwise models were estimated, including demographic and socioeconomic variables, to assess their inter-relation with inequalities in SRH by material deprivation. Results The results showed a steady increase in poor SRH over the 10-year duration of the study. A quadratic (inverted U-shaped) trend was observed in material deprivation in the standards of living, which rose from 2001 to 2005, and then declined in 2011. A similar but non-significant trend was found in relative and absolute inequalities in SRH by material deprivation, which increased from 2001 to 2005 and then declined. Conclusions Inequality in SRH by material deprivation was relatively stable; however, an observed quadratic trend coincided with active and passive labour market reforms in Germany in early 2005
    • …
    corecore