20 research outputs found

    Research Toward the Practical Application of a Risk Evaluation Framework: Security Analysis of the Clinical Area within the German Electronic Health Information System

    Get PDF
    The following study provides a risk analysis of the forthcoming nationwide healthcare information system in Germany. Based on the information security audit methodology of the Federal Office for Information Security (BSI), we evaluated the introduction of the new system in hospitals with respect to security. Conceptually, the study focuses explicitly on an organizational level; specifically the use of healthcare telematics components such as electronic health card and health professional card. A dual approach of both security process and risk analysis thereby established an adequate level of information security. For this purpose, an appropriate framework specifically designed for the clinical area is first developed and explained in detail. Based on these perceptions it is possible to precisely check the workflows “patient admission” and “prescription of medicine” for inherent organizational threats. The aim of this paper is to propose appropriate steps to mitigate potential risks before German healthcare telematics comes into use

    Nanostructured 2D WS2@PANI nanohybrids for electrochemical energy storage

    Get PDF
    : 2D materials are interesting flat nanoplatforms for the implementation of different electrochemical processes, due to the high surface area and tunable electronic properties. 2D transition metal dichalcogenides (TMDs) can be produced through convenient top-down liquid-phase exfoliation (LPE) methods and present capacitive behaviour that can be exploited for energy storage applications. However, in their thermodynamically stable 2H crystalline phase, they present poor electrical conductivity, being this phase a purely semiconducting one. Combination with conducting polymers like polyaniline (PANI), into nanohybrids, can provide better properties for the scope. In this work, we report on the preparation of 2D WS2@PANI hybrid materials in which we exploit the LPE TMD nanoflakes as scaffolds, onto which induce the in-situ aniline polymerization and thus achieve porous architectures, with the help of surfactants and sodium chloride acting as templating agents. We characterize these species for their capacitive behaviour in neutral pH, achieving maximum specific capacitance of 160 F/g at a current density of 1 A/g, demonstrating the attractiveness of similar nanohybrids for future use in low-cost, easy-to-make supercapacitor devices

    Diagnosis and treatment of neurogenic dysphagia - S1 guideline of the German Society of Neurology.

    Get PDF
    INTRODUCTION Neurogenic dysphagia defines swallowing disorders caused by diseases of the central and peripheral nervous system, neuromuscular transmission, or muscles. Neurogenic dysphagia is one of the most common and at the same time most dangerous symptoms of many neurological diseases. Its most important sequelae include aspiration pneumonia, malnutrition and dehydration, and affected patients more often require long-term care and are exposed to an increased mortality. Based on a systematic pubmed research of related original papers, review articles, international guidelines and surveys about the diagnostics and treatment of neurogenic dysphagia, a consensus process was initiated, which included dysphagia experts from 27 medical societies. RECOMMENDATIONS This guideline consists of 53 recommendations covering in its first part the whole diagnostic spectrum from the dysphagia specific medical history, initial dysphagia screening and clinical assessment, to more refined instrumental procedures, such as flexible endoscopic evaluation of swallowing, the videofluoroscopic swallowing study and high-resolution manometry. In addition, specific clinical scenarios are captured, among others the management of patients with nasogastric and tracheotomy tubes. The second part of this guideline is dedicated to the treatment of neurogenic dysphagia. Apart from dietary interventions and behavioral swallowing treatment, interventions to improve oral hygiene, pharmacological treatment options, different modalities of neurostimulation as well as minimally invasive and surgical therapies are dealt with. CONCLUSIONS The diagnosis and treatment of neurogenic dysphagia is challenging and requires a joined effort of different medical professions. While the evidence supporting the implementation of dysphagia screening is rather convincing, further trials are needed to improve the quality of evidence for more refined methods of dysphagia diagnostics and, in particular, the different treatment options of neurogenic dysphagia. The present article is an abridged and translated version of the guideline recently published online ( https://www.awmf.org/uploads/tx_szleitlinien/030-111l_Neurogene-Dysphagie_2020-05.pdf )

    Specifying and Validating Probabilistic Inputs for Prescriptive Models of Decision Making over Time

    Get PDF
    Optimization models for making decisions over time in uncertain environments rely on probabilistic inputs, such as scenario trees for stochastic mathematical programs. The quality of model outputs, i.e., the solutions obtained, depends on the quality of these inputs. However, solution quality is rarely assessed in a rigorous way. The connection between validation of model inputs and quality of the resulting solution is not immediate. This chapter discusses some efforts to formulate realistic probabilistic inputs and subsequently validate them in terms of the quality of solutions they produce. These include formulating probabilistic models based on statistical descriptions understandable to decision makers; conducting statistical tests to assess the validity of stochastic process models and their discretization; and conducting re-enactments to assess the quality of the formulation in terms of solution performance against observational data. Studies of long-term capacity expansion in service industries, including electric power, and short-term scheduling of thermal electricity generating units provide motivation and illustrations. The chapter concludes with directions for future research

    The effect of plant size and branch traits on rainfall interception of 10 temperate tree species

    No full text
    Rainfall interception by vegetation plays an important role in the hydrological cycle. Next to rainfall characteristics, interception is influenced by tree size, crown structure and bark morphology. How tree traits determine interception across functionally and morphologically wide-ranging tree species is poorly understood. We determined interception ratios (interception:gross precipitation) and canopy storage capacities of seven temperate deciduous broadleaved (Acer pseudoplatanus L., Betula pendula Roth, Carpinus betulus L., Fagus sylvatica L., Populus tremula L., Sorbus aucuparia L.) and three evergreen coniferous tree species (Picea abies (L.) Karsten, Pinus sylvestris L., Pseudotsuga menziesii (Mirb.) Franco) as well as the influence of various tree traits on interception parameters. Interception was measured directly with natural rainfall by means of gravimetry on potted trees, 2–8 m tall, for seven consecutive months. Our results show that (a) the coniferous species had larger canopy storage capacities and larger interception ratios than the broadleaved species both during (summer) and outside the growing season (winter); (b) the absolute tree interception (in kg) of the broadleaved species was positively related to stem diameter at breast height, tree and crown height, maximum branch length, the total branch surface area and above ground dry weight; and (c) interception per unit crown projected area (in mm) of all species was positively related to branch length and branch surface area per unit crown projected area. These results can be used to estimate interception parameters from plant traits and to simulate interception losses of trees in a more reliable manner
    corecore