43 research outputs found
Comparisons of psychophysical and neurophysiological studies of cochlear implants
This paper compares psychophysical and neural studies of electrical stimulation of the auditory nerve with the goal of evaluating the relevance of single-unit animal models for the development of cochlear prostheses for profoundly deaf humans. Comparative psychophysical studies with implanted deaf subjects indicate that animal models, at least nonhuman primates, provide a close match to humans, though this is not always true for acoustic stimulation of normal-hearing subjects. However, the human-animal comparisons, especially those involving electrical stimuli, need further study using more carefully matched conditions. Comparisons of psychophysical and neurophysiological thresholds for electrical stimulation in animals reveal consistently higher thresholds in the neural studies. A number of factors which may account for these differences are discussed. A partial resolution of the problem could result from conducting neurophysiological and behavioral studies in the same animal. Finally, comparison of psychophysical and neurophysiological studies of temporal encoding suggest that there may be more information encoded in the auditory nerve than is used by the system, at least for nonspectral frequency discrimination. This points to a need for further analysis of the processing of this information at higher levels in the auditory pathway.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27195/1/0000198.pd
Across-Site Variation in Detection Thresholds and Maximum Comfortable Loudness Levels for Cochlear Implants
In cochlear implants, variation across stimulation sites in psychophysical detection thresholds (T levels) and maximum comfortable loudness levels (C levels) can be large when narrow-bipolar (BP) stimulation is used. This across-site variation is typically smaller when monopolar (MP) stimulation is used. At least two models can account for across-site variation and the effects of electrode configuration on the magnitude of the variation. According to one model, across-site variation reflects site-to-site differences in the distances between the stimulating electrodes and the sites of action-potential initiation. Under this model, the lower across-site variation with MP stimulation is due to shallower current versus distance gradients. An alternative model assumes that T and C levels depend on integration of activity across the whole population of neurons and that MP stimulation activates neurons over a larger spatial extent than does BP stimulation. If T and C levels are determined by integration of activity across large overlapping populations of neurons, then their values at adjacent sites should be more similar than if these levels result from integration across smaller, more independent populations. We tested the models by examining the effects on across-site variation of three variables believed to affect the spatial extent of activation: electrode configuration, stimulus level within the dynamic range, and electrode-array design. T levels and C levels were measured in 13 subjects with Nucleus ® CI24M (straight array) and 9 subjects with Nucleus ® CI24R(CS) (Contour) cochlear implants using bipolar (BP) and monopolar (MP) electrode configurations. Site-to-site variation in T and C levels for BP stimulation was 2.1–3.3 times larger than that for MP stimulation. Contrary to the across-neuron integration hypothesis, no significant differences were found between across-site variation for T levels and that for C levels for the BP configuration. There was considerable overlap in site-to-site variation values for the two types of implants but mean site-to-site variation in C levels for CI24M implants was significantly lower than that for CI24R(CS) implants. Control studies suggested that these results were not an artifact of the scale, and not due to differences in inherent variability of the psychophysical measures, or to the method of quantifying across-site variation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41381/1/10162_2003_Article_3051.pd
Inner ear implants for experimental electrical stimulation of auditory nerve arrays
Electrode arrays chronically implanted in the inner ear are gaining increased use for experimental studies of the auditory nervous system, as well as for studies related to development of improved auditory prostheses. Commercially available electrode arrays are designed for human use and thus may be unsuitable for experimental studies, particularly in small animals. This paper describes a simple, inexpensive method for making custom electrode arrays in a variety of configurations, suitable for animals ranging from small rodents to non-human primates.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27909/1/0000330.pd
Effects of Electrode Configuration and Stimulus Level on Rate and Level Discrimination with Cochlear Implants
Recent studies have demonstrated that speech perception with cochlear implants can be significantly affected by electrode configuration. Contrary to expectations, broader configurations (monopolar or broad bipolar) produced equal or better speech recognition compared with narrower configurations (narrow bipolar or common ground). One hypothesis that would account for these results is that broader configurations excite larger populations of neurons providing a more robust representation of information on each channel of the prosthesis. It is known that the number of neurons excited by an electrical stimulus increases considerably as the stimulus level increases. Furthermore, many types of discrimination improve as a function of stimulus level. If the discrimination improvements seen with increasing stimulus level are due to increasing the size of the neural population carrying the signal, and if broadening the electrode configuration also increases the size of the activated neural population, then one would expect level and electrode configuration to affect discrimination in similar ways. To test this hypothesis, we studied several types of discrimination as a function of level and electrode configuration in four nonhuman primates with cochlear implants. We tested electrode configurations that produced current fields ranging from very restricted (tripolar) to broad (parallel monopolar). For each configuration, pulse-rate discrimination, amplitude-modulation-frequency discrimination, and level discrimination were tested at current levels spanning much of the psychophysical dynamic range. Results showed large effects of current level on discrimination in many cases. However, effects of electrode configuration at comparable levels within the dynamic range were smaller or absent. Furthermore, the effect of level on discrimination was independent of electrode configuration in most cases even though the rate of spread of neural activation with level is expected to depend on electrode configuration. Possible interpretations of these results are that (1) the current level adjustments necessary to achieve comparable loudness for the various configurations significantly countered any effects of electrode configuration on the size of the activated neural population, or (2) the effects of level on discrimination do not result from its effects on the spatial extent of neural activation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41377/1/10162_2000_Article_22.pd
Electrical stimulation of the auditory nerve: Effects of pulse width on frequency discrimination
Effects of pulse width on discrimination of simultaneous changes in frequency and level of electrical pulse trains were studied in a monkey subject with a cochlear implant. At test-stimulus levels where performance was minimum, frequency difference limens were larger for longer-duration pulses than that for shorter-duration pulses. Several factors may have contributed to these differences.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29807/1/0000153.pd
Effects of Stimulus Level on Speech Perception with Cochlear Prostheses
This study is one of a series that examines stimulus features important for cochlear implant function. Here, we examine effects of stimulus level. In subjects with cochlear implants, a number of psychophysical tests of temporal discrimination (pulse rate discrimination, gap detection, etc.) show marked improvement as a function of stimulus level through most or all of the dynamic range, while electrode-place discrimination can improve or degrade as a function of level. In this study, effects of these combined potential influences were studied by examining the effects of stimulus level on syllable identification. We tested two hypotheses: that syllable identification varies as a function of stimulus level and that level and electrode configuration interact in affecting syllable identification. We examined vowel and consonant identification as a function of stimulus level for bipolar and monopolar electrode configurations. We used experimental processor maps where upper and lower stimulation limits of each electrode pair were equated to eliminate confounding effects of dynamic range, which varies across subjects and electrodes. For each channel, stimulation amplitude was set to a fixed percentage of its dynamic range. Eight adult subjects with Nucleus CI24M implants were tested using the SPEAK processing strategy. With each electrode configuration, stimulus levels were tested from 0% to 90% of the dynamic range in nine steps. The effects on consonant and vowel identification were similar. Phoneme identification was usually better for monopolar than for bipolar stimulation. In the lower half of the dynamic range, syllable identification usually increased as a function of stimulus level. In the upper half of the dynamic range, syllable identification continued to increase as a function of level to 90% of the dynamic range for some subjects, while for others there was no appreciable change or a decrease as a function of level. Decreases in performance at high levels were more common with monopolar than bipolar stimulation. These results suggest that if speech processors are programmed to optimize level for each individual, speech perception performance could be improved.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42440/1/30040049.pd
Effects of phase duration on detection of electrical stimulation of the human cochlea
Detection thresholds for biphasic symmetric pulses were measured in fourteen human subjects implanted with the Cochlear Corporation Nucleus 22 Implant. The effects of phase duration on thresholds were studied using single pulses, and 500 ms pulse trains at 100 pps. Psychophysical detection thresholds decreased as a function of phase duration with a change in slope at approximately 0.5 ms/phase. Mean single-pulse and pulse-train slopes were -3.60 and -4.25 dB/doubling of phase duration for pulse durations of less than about 0.5 ms/phase. For pulse durations greater than 0.5 ms/phase, mean slopes were -5.71 and -7.54 dB/doubling for single pulses and pulse trains, respectively. Thresholds for pulse trains decreased as a function of stimulus duration for durations up to at least 300 ms, with the rate of decrease being dependent on the phase duration of the pulse. Effects of stimulus duration were greater for longer phase duration signals. We hypothesize that the longer phase duration pulses activate multiple spikes in a single fiber and/or more effective patterns of spikes across fibers, which may explain why slopes of psychophysical threshold functions are steeper than those of functions for single auditory nerve fibers for longer duration pulses. Thresholds were compared to respective speech perception scores (CID sentences) since thresholds for long phase duration signals have been shown previously to be correlated with nerve survival patterns, and nerve survival patterns may affect speech perception. Correlation coefficients ranged from -0.59 to -0.81, depending on stimulus parameters and subject selection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30807/1/0000465.pd
Effects of Electrode Configuration and Place of Stimulation on Speech Perception with Cochlear Prostheses
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42437/1/10162-2-2-87_10020087.pd
Chronic skull-anchored percutaneous implants in non-human primates
Three groups of chronic, skull-anchored, percutaneous implants differing in materials, design and surgical procedures used for implantation, were tested in macaque monkeys in conjunction with studies of an inner ear stimulation device. Implants from the first two groups in which high-speed drilling methods and stainless steel materials were used, showed a high percentage of failures during the first 3 months after implantation of the percutaneous connector. Implants in the third group, in which measures were taken to preserve living bone tissue, all survived for greater than 7 months. Probable factors relating to implant survival are care of the bone during surgery, postsurgical mechanical trauma, materials and other details of the surgical procedure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27773/1/0000167.pd
Effects of stimulus level on nonspectral frequency discrimination by human subjects
Frequency difference limens were determined as a function of reference-stimulus level for pulsatile electrical stimuli in 5 postlingually deaf human subjects with Nucleus-22 cochlear implants and for sinusoidally amplitude-modulated acoustic white noise stimuli in 4 normal-hearing humans. Subjects were tested at levels throughout the dynamic range and extending to the lowest detectable levels. Response stability was measured over the course of 10 sessions. For electrical stimulation in the deaf ears, difference limens decreased as a function of level throughout much or all of the dynamic range of hearing. This result contrasts with the case for nonspectral acoustic stimulation of normal-hearing subjects, where nonspectral frequency difference limens were strongly affected by level only near the detection threshold. These data suggest differences in the acoustic and electrical response spaces that must be considered in the design of auditory prosthesis processors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31401/1/0000316.pd