7 research outputs found
Recommended from our members
Effect of pore pressure on damage accumulation in salt
Laboratory data acquired from two multistage, triaxial compression creep experiments are presented for bedded salt. The experiments were conducted to study the effect of pore pressure changes on the accumulation of damage (dilatant volumetric strain). The first experiment comprised five constant total stress tests in which the internal pore pressure was incremented during successive stages, while the externally applied axial and radial stresses were maintained constant. The second experiment comprised three constant effective stress tests in which the pore pressure and the externally applied axial and radial stresses were increased in equal increments in successive stages. Volumetric strain rates were determined both before and after the pore pressure changes were made in all tests. The data suggest pore pressure changes made during the constant total stress tests have a greater effect on salt dilation than do changes made during the constant effective stress tests
Recommended from our members
RATDAMPER - A Numerical Model for Coupling Mechanical and Hydrological Properties within the Disturbed Rock Zone at the Waste Isolation Pilot Plant
A numerical model for predicting damage and permeability in the disturbed rock zone (DRZ) has been developed. The semi-empirical model predicts damage based on a function of stress tensor invariant. For a wide class of problems hydrologic/mechanical coupling is necessary for proper analysis. The RATDAMPER model incorporates dilatant volumetric strain and permeability. The RATDAMPER model has been implemented in a weakly coupled code, which combines a finite element structural code and a finite difference multi-phase fluid flow code. Using the development of inelastic volumetric strain, a value of permeability can be assigned. This flexibility allows empirical permeability functional relationships to be evaluated
Recommended from our members
An Investigation of the Integrity of Cemented Casing Seals with Application to Salt Cavern Sealing and Abandonment
This research project was pursued in three key areas. (1) Salt permeability testing under complex stress states; (2) Hydraulic and mechanical integrity investigations of the well casing shoe through benchscale testing; and (3) Geomechanical modeling of the fluid/salt hydraulic and mechanical interaction of a sealed cavern
Recommended from our members
Consolidation, permeability, and strength of crushed salt/bentonite mixtures with application to the WIPP (Waste Isolation Pilot Plant)
Three tests were performed to measure the consolidation, permeability, and compressive strength of specimens prepared from bentonite/crushed salt mixtures. Each mixture comprised 30% bentonite and 70% crushed salt based on total dry weight. Brine was added to each mixture to adjust its water content to either 5 or 10% (nominal) of the total dry weight of the mixture. In the consolidation tests, each specimen was subjected to multiple stages of successively higher hydrostatic stress (pressure). During each stage, the pressure was maintained at a constant level and volumetric strain data were continuously logged. By using multiple stages, consolidation data were obtained at several pressures and the time required to consolidate the specimens to full saturation was reduced. Once full saturation was achieved, each specimen was subjected to a final test stage in which the hydrostatic stress was reduced and a permeability test performed. Permeability was measured using the steady flow of brine and was found to range between 1 {times} 10{sup {minus}17} and 5 {times} 10{sup {minus}17} m{sup 2}. After the final test stage, unconfined compressive strength was determined for each specimen and was found to range between 0.5 and 8.1 MPa. Two constitutive models were fitted to the consolidation data. One relatively simple model related volumetric strain to time while the other related instantaneous density to time, pressure, and initial density. 8 refs., 9 figs., 8 tabs