12,214 research outputs found

    Magnetoresistance Oscillations in Two-dimensional Electron Systems Induced by AC and DC Fields

    Full text link
    We report on magnetotransport measurements in a high-mobility two-dimentional electron system subject simultaneously to AC (microwave) and DC (Hall) fields. We find that DC excitation affects microwave photoresistance in a nontrivial way. Photoresistance maxima (minima) evolve into minima (maxima) and back, reflecting strong coupling and interplay of AC- and DC-induced effects. Most of our observations can be explained in terms of indirect electron transitions using a new, ``combined'' resonant condition. Observed quenching of microwave-induced zero resistance by a DC field cannot be unambiguously linked to a domain model, at least until a systematic theory treating both excitation types within a single framework is developed

    Coulomb Oscillations in Antidots in the Integer and Fractional Quantum Hall Regimes

    Full text link
    We report measurements of resistance oscillations in micron-scale antidots in both the integer and fractional quantum Hall regimes. In the integer regime, we conclude that oscillations are of the Coulomb type from the scaling of magnetic field period with the number of edges bound to the antidot. Based on both gate-voltage and field periods, we find at filling factor {\nu} = 2 a tunneling charge of e and two charged edges. Generalizing this picture to the fractional regime, we find (again, based on field and gate-voltage periods) at {\nu} = 2/3 a tunneling charge of (2/3)e and a single charged edge.Comment: related papers at http://marcuslab.harvard.ed

    Bilayer Quantum Hall Systems at nuT = 1: Coulomb Drag and the Transition from Weak to Strong Interlayer Coupling

    Get PDF
    Measurements revealing anomalously large frictional drag at the transition between the weakly and strongly coupled regimes of a bilayer two-dimensional electron system at total Landau level filling factor nuT = 1 are reported. This result suggests the existence of fluctuations, either static or dynamic, near the phase boundary separating the quantized Hall state at small layer separations from the compressible state at larger separations. Interestingly, the anomalies in drag seem to persist to larger layer separations than does interlayer phase coherence as detected in tunneling

    Surface segregation and the Al problem in GaAs quantum wells

    Full text link
    Low-defect two-dimensional electron systems (2DESs) are essential for studies of fragile many-body interactions that only emerge in nearly-ideal systems. As a result, numerous efforts have been made to improve the quality of modulation-doped Alx_xGa1−x_{1-x}As/GaAs quantum wells (QWs), with an emphasis on purifying the source material of the QW itself or achieving better vacuum in the deposition chamber. However, this approach overlooks another crucial component that comprises such QWs, the Alx_xGa1−x_{1-x}As barrier. Here we show that having a clean Al source and hence a clean barrier is instrumental to obtain a high-quality GaAs 2DES in a QW. We observe that the mobility of the 2DES in GaAs QWs declines as the thickness or Al content of the Alx_xGa1−x_{1-x}As barrier beneath the QW is increased, which we attribute to the surface segregation of Oxygen atoms that originate from the Al source. This conjecture is supported by the improved mobility in the GaAs QWs as the Al cell is cleaned out by baking

    Probing the Melting of a Two-dimensional Quantum Wigner Crystal via its Screening Efficiency

    Full text link
    One of the most fundamental and yet elusive collective phases of an interacting electron system is the quantum Wigner crystal (WC), an ordered array of electrons expected to form when the electrons' Coulomb repulsion energy eclipses their kinetic (Fermi) energy. In low-disorder, two-dimensional (2D) electron systems, the quantum WC is known to be favored at very low temperatures (TT) and small Landau level filling factors (ν\nu), near the termination of the fractional quantum Hall states. This WC phase exhibits an insulating behavior, reflecting its pinning by the small but finite disorder potential. An experimental determination of a TT vs ν\nu phase diagram for the melting of the WC, however, has proved to be challenging. Here we use capacitance measurements to probe the 2D WC through its effective screening as a function of TT and ν\nu. We find that, as expected, the screening efficiency of the pinned WC is very poor at very low TT and improves at higher TT once the WC melts. Surprisingly, however, rather than monotonically changing with increasing TT, the screening efficiency shows a well-defined maximum at a TT which is close to the previously-reported melting temperature of the WC. Our experimental results suggest a new method to map out a TT vs ν\nu phase diagram of the magnetic-field-induced WC precisely.Comment: The formal version is published on Phys. Rev. Lett. 122, 116601 (2019

    Double layer two-dimensional electron systems: Probing the transition from weak to strong coupling with Coulomb drag

    Get PDF
    Frictional drag measurements revealing anomalously large dissipation at the transition between the weakly- and strongly-coupled regimes of a bilayer two-dimensional electron system at total Landau level filling factor νT=1\nu_T =1 are reported. This result suggests the existence of fluctuations, either static or dynamic, near the phase boundary separating the quantized Hall state at small layer separations from the compressible state at larger separations. Interestingly, the anomalies in drag seem to persist to larger layer separations than does interlayer phase coherence as detected in tunneling.Comment: 4 pages, 4 figure

    Reorientation of the stripe Phase of 2D Electrons by a Minute Density Modulation

    Full text link
    Interacting two-dimensional electrons confined in a GaAs quantum well exhibit isotropic transport when the Fermi level resides in the first excited (N=1N=1) Landau level. Adding an in-plane magnetic field (B∣∣B_{||}) typically leads to an anisotropic, stripe-like (nematic) phase of electrons with the stripes oriented perpendicular to the B∣∣B_{||} direction. Our experimental data reveal how a periodic density modulation, induced by a surface strain grating from strips of negative electron-beam resist, competes against the B∣∣B_{||}-induced orientational order of the stripe phase. Even a minute (<0.25%<0.25\%) density modulation is sufficient to reorient the stripes along the direction of the surface grating.Comment: Accepted for publication in Phys. Rev. Let
    • …
    corecore