13,847 research outputs found

    Field-induced resonant tunneling between parallel two-dimensional electron systems

    Get PDF
    Resonant tunneling between two high-mobility two-dimensional (2D) electron systems in a double quantum well structure has been induced by the action of an external Schottky gate field. Using one 2D electron gas as source and the other as drain, the tunnel conductance between them shows a strong resonance when the gate field aligns the ground subband edges of the two quantum wells

    Independently contacted two-dimensional electron systems in double quantum wells

    Get PDF
    A new technique for creating independent ohmic contacts to closely spaced two-dimensional electron systems in double quantum well (DQW) structures is described. Without use of shallow diffusion or precisely controlled etching methods, the present technique results in low-resistance contacts which can be electrostatically switched between the two-conducting layers. The method is demonstrated with a DQW consisting of two 200 Ã… GaAs quantum wells separated by a 175 Ã… AlGaAs barrier. A wide variety of experiments on Coulomb and tunnel-coupled 2D electron systems is now accessible

    Charge metastability and hysteresis in the quantum Hall regime

    Get PDF
    We report simultaneous quasi-dc magnetotransport and high frequency surface acoustic wave measurements on bilayer two-dimensional electron systems in GaAs. Near strong integer quantized Hall states a strong magnetic field sweep hysteresis in the velocity of the acoustic waves is observed at low temperatures. This hysteresis indicates the presence of a metastable state with anomalously high conductivity in the interior of the sample. This non-equilibrium state is not revealed by conventional low frequency transport measurements which are dominated by dissipationless transport at the edge of the 2D system. We find that a field-cooling technique allows the equilibrium charge configuration within the interior of the sample to be established. A simple model for this behavior is discussed.Comment: 8 pages, 4 postscript figure

    Resistively-Detected NMR in a Two-Dimensional Electron System near ν=1\nu = 1: Clues to the Origin of the Dispersive Lineshape

    Get PDF
    Resistively-detected NMR measurements on 2D electron systems near the ν=1\nu = 1 quantum Hall state are reported. In contrast to recent results of Gervais \emph{et al.} [Phys. Rev. Lett. 94\bf 94, 196803 (2005)], a dispersive lineshape is found at all RF powers studied and Korringa-like nuclear spin-lattice relaxation is observed. The shape of the unexplained dispersive lineshape is found to invert when the temperature derivative of the longitudinal resistance changes sign. This suggests that both Zeeman and thermal effects are important to resistively-detected NMR in this regime.Comment: 5 pages, 4 figures. Version accepted for publication in Phys. Rev.B, Rapid Communication

    Bilayer Quantum Hall Systems at nuT = 1: Coulomb Drag and the Transition from Weak to Strong Interlayer Coupling

    Get PDF
    Measurements revealing anomalously large frictional drag at the transition between the weakly and strongly coupled regimes of a bilayer two-dimensional electron system at total Landau level filling factor nuT = 1 are reported. This result suggests the existence of fluctuations, either static or dynamic, near the phase boundary separating the quantized Hall state at small layer separations from the compressible state at larger separations. Interestingly, the anomalies in drag seem to persist to larger layer separations than does interlayer phase coherence as detected in tunneling

    Double layer two-dimensional electron systems: Probing the transition from weak to strong coupling with Coulomb drag

    Get PDF
    Frictional drag measurements revealing anomalously large dissipation at the transition between the weakly- and strongly-coupled regimes of a bilayer two-dimensional electron system at total Landau level filling factor νT=1\nu_T =1 are reported. This result suggests the existence of fluctuations, either static or dynamic, near the phase boundary separating the quantized Hall state at small layer separations from the compressible state at larger separations. Interestingly, the anomalies in drag seem to persist to larger layer separations than does interlayer phase coherence as detected in tunneling.Comment: 4 pages, 4 figure

    Metastable Resistance Anisotropy Orientation of Two-Dimensional Electrons in High Landau Levels

    Get PDF
    In half-filled high Landau levels, two-dimensional electron systems possess collective phases which exhibit a strongly anisotropic resistivity tensor. A weak, but as yet unknown, rotational symmetry-breaking potential native to the host semiconductor structure is necessary to orient these phases in macroscopic samples. Making use of the known external symmetry-breaking effect of an in-plane magnetic field, we find that the native potential can have two orthogonal local minima. It is possible to initialize the system in the higher minimum and then observe its relaxation toward equilibrium.Comment: 5 pages, 3 figures. Figure references corrected. Version accepted for publication in Physical Review Letter

    Spin Transition in the Half-Filled Landau Level

    Get PDF
    The transition from partial to complete spin polarization of two-dimensional electrons at half filling of the lowest Landau level has been studied using resistively-detected nuclear magnetic resonance (RDNMR). The nuclear spin-lattice relaxation time is observed to be density independent in the partially polarized phase but to increase sharply at the transition to full polarization. At low temperatures the RDNMR signal exhibits a strong maximum near the critical density.Comment: 4 pages, 3 postscript figures. As published in Phys. Rev. Lett. 98, 086801 (2007
    • …
    corecore