12,555 research outputs found
Process for purification of silicon
The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step
Field-induced resonant tunneling between parallel two-dimensional electron systems
Resonant tunneling between two high-mobility two-dimensional (2D) electron systems in a double quantum well structure has been induced by the action of an external Schottky gate field. Using one 2D electron gas as source and the other as drain, the tunnel conductance between them shows a strong resonance when the gate field aligns the ground subband edges of the two quantum wells
Independently contacted two-dimensional electron systems in double quantum wells
A new technique for creating independent ohmic contacts to closely spaced two-dimensional electron systems in double quantum well (DQW) structures is described. Without use of shallow diffusion or precisely controlled etching methods, the present technique results in low-resistance contacts which can be electrostatically switched between the two-conducting layers. The method is demonstrated with a DQW consisting of two 200 Ã… GaAs quantum wells separated by a 175 Ã… AlGaAs barrier. A wide variety of experiments on Coulomb and tunnel-coupled 2D electron systems is now accessible
Charge metastability and hysteresis in the quantum Hall regime
We report simultaneous quasi-dc magnetotransport and high frequency surface
acoustic wave measurements on bilayer two-dimensional electron systems in GaAs.
Near strong integer quantized Hall states a strong magnetic field sweep
hysteresis in the velocity of the acoustic waves is observed at low
temperatures. This hysteresis indicates the presence of a metastable state with
anomalously high conductivity in the interior of the sample. This
non-equilibrium state is not revealed by conventional low frequency transport
measurements which are dominated by dissipationless transport at the edge of
the 2D system. We find that a field-cooling technique allows the equilibrium
charge configuration within the interior of the sample to be established. A
simple model for this behavior is discussed.Comment: 8 pages, 4 postscript figure
On the causal Barrett--Crane model: measure, coupling constant, Wick rotation, symmetries and observables
We discuss various features and details of two versions of the Barrett-Crane
spin foam model of quantum gravity, first of the Spin(4)-symmetric Riemannian
model and second of the SL(2,C)-symmetric Lorentzian version in which all
tetrahedra are space-like. Recently, Livine and Oriti proposed to introduce a
causal structure into the Lorentzian Barrett--Crane model from which one can
construct a path integral that corresponds to the causal (Feynman) propagator.
We show how to obtain convergent integrals for the 10j-symbols and how a
dimensionless constant can be introduced into the model. We propose a `Wick
rotation' which turns the rapidly oscillating complex amplitudes of the Feynman
path integral into positive real and bounded weights. This construction does
not yet have the status of a theorem, but it can be used as an alternative
definition of the propagator and makes the causal model accessible by standard
numerical simulation algorithms. In addition, we identify the local symmetries
of the models and show how their four-simplex amplitudes can be re-expressed in
terms of the ordinary relativistic 10j-symbols. Finally, motivated by possible
numerical simulations, we express the matrix elements that are defined by the
model, in terms of the continuous connection variables and determine the most
general observable in the connection picture. Everything is done on a fixed
two-complex.Comment: 22 pages, LaTeX 2e, 1 figur
Multiquantum well structure with an average electron mobility of 4.0×10^6 cm^2/V s
We report a modulation-doped multiquantum well structure which suppresses the usual ambient light effect associated with modulation doping. Ten GaAs quantum wells 300-Å wide are symmetrically modulation doped using Si δ doping at the center of 3600-Å-wide Al0.1Ga0.9As barriers. The low field mobility of each well is 4.0×10^6 cm/V s at a density of 6.4×10^10 cm^−2 measured at 0.3 K either in the dark, or during, or after, exposure to light. This mobility is an order of magnitude improvement over previous work on multiwells
Bilayer Quantum Hall Systems at nuT = 1: Coulomb Drag and the Transition from Weak to Strong Interlayer Coupling
Measurements revealing anomalously large frictional drag at the transition between the weakly and strongly coupled regimes of a bilayer two-dimensional electron system at total Landau level filling factor nuT = 1 are reported. This result suggests the existence of fluctuations, either static or dynamic, near the phase boundary separating the quantized Hall state at small layer separations from the compressible state at larger separations. Interestingly, the anomalies in drag seem to persist to larger layer separations than does interlayer phase coherence as detected in tunneling
Double layer two-dimensional electron systems: Probing the transition from weak to strong coupling with Coulomb drag
Frictional drag measurements revealing anomalously large dissipation at the
transition between the weakly- and strongly-coupled regimes of a bilayer
two-dimensional electron system at total Landau level filling factor
are reported. This result suggests the existence of fluctuations, either static
or dynamic, near the phase boundary separating the quantized Hall state at
small layer separations from the compressible state at larger separations.
Interestingly, the anomalies in drag seem to persist to larger layer
separations than does interlayer phase coherence as detected in tunneling.Comment: 4 pages, 4 figure
- …