10,535 research outputs found

    Current-induced nuclear-spin activation in a two-dimensional electron gas

    Full text link
    Electrically detected nuclear magnetic resonance was studied in detail in a two-dimensional electron gas as a function of current bias and temperature. We show that applying a relatively modest dc-current bias, I_dc ~ 0.5 microAmps, can induce a re-entrant and even enhanced nuclear spin signal compared with the signal obtained under similar thermal equilibrium conditions at zero current bias. Our observations suggest that dynamic nuclear spin polarization by small current flow is possible in a two-dimensional electron gas, allowing for easy manipulation of the nuclear spin by simple switching of a dc current.Comment: 5 pages, 3 fig

    Nonconventional odd denominator fractional quantum Hall states in the second Landau level

    Get PDF
    We report the observation of a new fractional quantum Hall state in the second Landau level of a two-dimensional electron gas at the Landau level filling factor ν=2+6/13\nu=2+6/13. We find that the model of noninteracting composite fermions can explain the magnitude of gaps of the prominent 2+1/3 and 2+2/3 states. The same model fails, however, to account for the gaps of the 2+2/5 and the newly observed 2+6/13 states suggesting that these two states are of exotic origin.omposite fermion model. However, the weaker 2+2/5 and 2+6/13 states deviate significantly suggesting that these states are of exotic origin

    Competition Between Fractional Quantum Hall Liquid, Bubble and Wigner Crystal Phases in the Third Landau Level

    Full text link
    Magnetotransport measurements were performed in a ultra-high mobility GaAs/AlGaAs quantum well of density ∼3.0×1011\sim 3.0 \times 10^{11} cm−2cm^{-2}. The temperature dependence of the magnetoresistance RxxR_{xx} was studied in detail in the vicinity of ν=9/2\nu={9/2}. In particular, we discovered new minima in RxxR_{xx} at filling factor ν≃41/5\nu\simeq 4{1/5} and 44/54{4/5}, but only at intermediate temperatures 80≲T≲12080\lesssim T\lesssim 120 mK. We interpret these as evidence for a fractional quantum Hall liquid forming in the N=2 Landau level and competing with bubble and Wigner crystal phases favored at lower temperatures. Our data suggest that a magnetically driven insulator-insulator quantum phase transition occurs between the bubble and Wigner crystal phases at T=0.Comment: Phys. Rev. Lett.93 266804 (2004
    • …
    corecore